15
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Call for Papers: Green Renal Replacement Therapy: Caring for the Environment

      Submit here before July 31, 2024

      About Blood Purification: 3.0 Impact Factor I 5.6 CiteScore I 0.83 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found

      Novel Aspects of Transforming Growth Factor-Beta in Diabetic Kidney Disease

      review-article
      , ,
      Nephron
      S. Karger AG

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: not found
          • Article: not found

          Transforming growth factor beta in tissue fibrosis.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            How cells read TGF-beta signals.

            Cell proliferation, differentiation and death are controlled by a multitude of cell-cell signals, and loss of this control has devastating consequences. Prominent among these regulatory signals is the transforming growth factor-beta (TGF-beta) family of cytokines, which can trigger a bewildering diversity of responses, depending on the genetic makeup and environment of the target cell. What are the networks of cell-specific molecules that mould the TGF-beta response to each cell's needs?
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Identification of Smad7, a TGFbeta-inducible antagonist of TGF-beta signalling.

              TGF-beta signals from the membrane to the nucleus through serine/threonine kinase receptors and their downstream effectors, termed SMAD proteins. The activated TGF-beta receptor induces phosphorylation of two such proteins, Smad2 and Smad3, which form hetero-oligomeric complex(es) with Smad4/DPC4 that translocate to the nucleus, where they then regulate transcriptional responses. However, the mechanisms by which the intracellular signals of TGF-beta are switched off are unclear. Here we report the identification of Smad7, which is related to Smad6. Transfection of Smad7 blocks responses mediated by TGF-beta in mammalian cells, and injection of Smad7 RNA into Xenopus embryos blocks activin/TGF-beta signalling. Smad7 associates stably with the TGF-beta receptor complex, but is not phosphorylated upon TGF-beta stimulation. TGFbeta-mediated phosphorylation of Smad2 and Smad3 is inhibited by Smad7, indicating that the antagonistic effect of Smad7 is exerted at this important regulatory step. TGF-beta rapidly induces expression of Smad7 mRNA, suggesting that Smad7 may participate in a negative feedback loop to control TGF-beta responses.
                Bookmark

                Author and article information

                Journal
                NEF
                Nephron
                10.1159/issn.1660-8151
                Nephron
                S. Karger AG
                1660-8151
                2235-3186
                2002
                September 2002
                14 August 2002
                : 92
                : 1
                : 7-21
                Affiliations
                Department of Medicine, Nephrology Division, Dorrance Hamilton Laboratories, Thomas Jefferson University School of Medicine, Philadelphia, Pa., USA
                Article
                64486 Nephron 2002;92:7–21
                10.1159/000064486
                12187079
                b0112a00-3d01-4812-870e-3233ccbaf5ff
                © 2002 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                History
                Page count
                Figures: 2, Tables: 1, References: 184, Pages: 15
                Categories
                Review

                Cardiovascular Medicine,Nephrology
                Cardiovascular Medicine, Nephrology

                Comments

                Comment on this article