34
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Impact of Neuroimmune Alterations in Autism Spectrum Disorder

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Autism spectrum disorder (ASD) involves a complex interplay of both genetic and environmental risk factors, with immune alterations and synaptic connection deficiency in early life. In the past decade, studies of ASD have substantially increased, in both humans and animal models. Immunological imbalance (including autoimmunity) has been proposed as a major etiological component in ASD, taking into account increased levels of pro-inflammatory cytokines observed in postmortem brain from patients, as well as autoantibody production. Also, epidemiological studies have established a correlation of ASD with family history of autoimmune diseases; associations with major histocompatibility complex haplotypes and abnormal levels of immunological markers in the blood. Moreover, the use of animal models to study ASD is providing increasing information on the relationship between the immune system and the pathophysiology of ASD. Herein, we will discuss the accumulating literature for ASD, giving special attention to the relevant aspects of factors that may be related to the neuroimmune interface in the development of ASD, including changes in neuroplasticity.

          Related collections

          Most cited references146

          • Record: found
          • Abstract: found
          • Article: not found

          Autism spectrum disorders: developmental disconnection syndromes.

          Autism is a common and heterogeneous childhood neurodevelopmental disorder. Analogous to broad syndromes such as mental retardation, autism has many etiologies and should be considered not as a single disorder but, rather, as 'the autisms'. However, recent genetic findings, coupled with emerging anatomical and functional imaging studies, suggest a potential unifying model in which higher-order association areas of the brain that normally connect to the frontal lobe are partially disconnected during development. This concept of developmental disconnection can accommodate the specific neurobehavioral features that are observed in autism, their emergence during development, and the heterogeneity of autism etiology, behaviors and cognition.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Elevated immune response in the brain of autistic patients.

            This study determined immune activities in the brain of ASD patients and matched normal subjects by examining cytokines in the brain tissue. Our results showed that proinflammatory cytokines (TNF-alpha, IL-6 and GM-CSF), Th1 cytokine (IFN-gamma) and chemokine (IL-8) were significantly increased in the brains of ASD patients compared with the controls. However the Th2 cytokines (IL-4, IL-5 and IL-10) showed no significant difference. The Th1/Th2 ratio was also significantly increased in ASD patients. ASD patients displayed an increased innate and adaptive immune response through the Th1 pathway, suggesting that localized brain inflammation and autoimmune disorder may be involved in the pathogenesis of ASD.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Neuron number and size in prefrontal cortex of children with autism.

              Autism often involves early brain overgrowth, including the prefrontal cortex (PFC). Although prefrontal abnormality has been theorized to underlie some autistic symptoms, the cellular defects that cause abnormal overgrowth remain unknown. To investigate whether early brain overgrowth in children with autism involves excess neuron numbers in the PFC. DESIGN, SETTING, AND CASES: Postmortem prefrontal tissue from 7 autistic and 6 control male children aged 2 to 16 years was examined by expert anatomists who were blinded to diagnostic status. Number and size of neurons were quantified using stereological methods within the dorsolateral (DL-PFC) and mesial (M-PFC) subdivisions of the PFC. Cases were from the eastern and southeastern United States and died between 2000 and 2006. Mean neuron number and size in the DL-PFC and M-PFC were compared between autistic and control postmortem cases. Correlations of neuron number with deviation in brain weight from normative values for age were also performed. Children with autism had 67% more neurons in the PFC (mean, 1.94 billion; 95% CI, 1.57-2.31) compared with control children (1.16 billion; 95% CI, 0.90-1.42; P = .002), including 79% more in DL-PFC (1.57 billion; 95% CI, 1.20-1.94 in autism cases vs 0.88 billion; 95% CI, 0.66-1.10 in controls; P = .003) and 29% more in M-PFC (0.36 billion; 95% CI, 0.33-0.40 in autism cases vs 0.28 billion; 95% CI, 0.23-0.34 in controls; P = .009). Brain weight in the autistic cases differed from normative mean weight for age by a mean of 17.6% (95% CI, 10.2%-25.0%; P = .001), while brains in controls differed by a mean of 0.2% (95% CI, -8.7% to 9.1%; P = .96). Plots of counts by weight showed autistic children had both greater total prefrontal neuron counts and brain weight for age than control children. In this small preliminary study, brain overgrowth in males with autism involved an abnormal excess number of neurons in the PFC.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Psychiatry
                Front Psychiatry
                Front. Psychiatry
                Frontiers in Psychiatry
                Frontiers Media S.A.
                1664-0640
                09 September 2015
                2015
                : 6
                : 121
                Affiliations
                [1] 1Translational Research Group in Autism Spectrum Disorder (GETTEA), Federal University of Rio Grande do Sul , Porto Alegre, Brazil
                [2] 2Research Group in Neuroglial Plasticity, Department of Biochemistry, Federal University of Rio Grande do Sul , Porto Alegre, Brazil
                [3] 3Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation , Rio de Janeiro, Brazil
                [4] 4Sorbonne Université, Université Pierre et Marie Curie , Paris, France
                [5] 5INSERM UMR-S 839 , Paris, France
                [6] 6Institut du Fer à Moulin , Paris, France
                [7] 7Child Neurology Unit, Clinical Hospital of Porto Alegre, Federal University of Rio Grande do Sul , Porto Alegre, Brazil
                Author notes

                Edited by: Rochelle S. Cohen, University of Illinois at Chicago, USA

                Reviewed by: Dario Siniscalco, Second University of Naples, Italy; Hongen Wei, Shanxi Medical University, China

                *Correspondence: Carmem Gottfried, Ramiro Barcelos, 2600-Anexo, Porto Alegre, Rio Grande do Sul 90035003, Brazil, cgottfried@ 123456ufrgs.br ; Wilson Savino, Laboratório de Pesquisa sobre o Timo, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Ave. Brasil 4365, Manguinhos, Rio de Janeiro 21045-900, Brazil, savino.w@ 123456gmail.com

                Specialty section: This article was submitted to Systems Biology, a section of the journal Frontiers in Psychiatry

                Article
                10.3389/fpsyt.2015.00121
                4563148
                25717313
                b0124f1c-1b00-4cdb-90aa-7db5b1a0c6ac
                Copyright © 2015 Gottfried, Bambini-Junior, Francis, Riesgo and Savino.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 06 July 2015
                : 17 August 2015
                Page count
                Figures: 2, Tables: 4, Equations: 0, References: 178, Pages: 16, Words: 13295
                Categories
                Psychiatry
                Hypothesis and Theory

                Clinical Psychology & Psychiatry
                autism,neuroimmune interactions,environmental risk factors,rodent models,valproic acid

                Comments

                Comment on this article