36
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Supramolecular polymer transformation: a kinetic study.

      1 , ,
      The journal of physical chemistry. B

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Investigation of supramolecular kinetics is essential for elucidating self-assembly mechanisms. Recently, we reported on a noncovalent system involving a bolaamphiphilic perylene diimide dimer that is kinetically trapped in water but can rearrange into a different, more ordered assembly in water/THF mixtures ( Angew. Chem. Int. Ed. 2014 , 53 , 4123 ). Here we present a kinetic mechanistic study of this process by employing UV-vis spectroscopy. The transformation exhibits a rapid decrease in the red-shifted absorption band, which is monitored in order to track the kinetics at different temperatures (15-50 °C) and concentrations. Fitting the data with the 1D KJMA (Kolmogorov-Johnson-Mehl-Avrami) model affords the activation parameters. The latter as well as seeding experiments indicates that the transformation occurs without the detachment of covalent units, and that hydration dynamics plays a significant role in nucleation, with entropic factors being dominant. Switching off the transformation, and the formation of off-pathway intermediates were observed upon heating to temperatures above 55 °C. These insights into kinetically controlled supramolecular polymer transformations provide mechanistic information that is needed for a fundamental understanding of noncovalent processes, and the rational design of noncovalent materials.

          Related collections

          Author and article information

          Journal
          J Phys Chem B
          The journal of physical chemistry. B
          1520-5207
          1520-5207
          Oct 16 2014
          : 118
          : 41
          Affiliations
          [1 ] Department of Organic Chemistry, The Weizmann Institute of Science , Rehovot 76100, Israel.
          Article
          10.1021/jp507945t
          25238603
          b0150b66-3ade-480f-a89c-03b669857e6f
          History

          Comments

          Comment on this article