2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Compact Binary Coalescences: Astrophysical Processes and Lessons Learned

      , ,
      Galaxies
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          On 11 February 2016, the LIGO and Virgo scientific collaborations announced the first direct detection of gravitational waves, a signal caught by the LIGO interferometers on 14 September 2015, and produced by the coalescence of two stellar-mass black holes. The discovery represented the beginning of an entirely new way to investigate the Universe. The latest gravitational-wave catalog by LIGO, Virgo and KAGRA brings the total number of gravitational-wave events to 90, and the count is expected to significantly increase in the next years, when additional ground-based and space-born interferometers will be operational. From the theoretical point of view, we have only fuzzy ideas about where the detected events came from, and the answers to most of the five Ws and How for the astrophysics of compact binary coalescences are still unknown. In this work, we review our current knowledge and uncertainties on the astrophysical processes behind merging compact-object binaries. Furthermore, we discuss the astrophysical lessons learned through the latest gravitational-wave detections, paying specific attention to the theoretical challenges coming from exceptional events (e.g., GW190521 and GW190814).

          Related collections

          Most cited references590

          • Record: found
          • Abstract: found
          • Article: not found
          Is Open Access

          Observation of Gravitational Waves from a Binary Black Hole Merger

          On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0×10(-21). It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ. The source lies at a luminosity distance of 410(-180)(+160)  Mpc corresponding to a redshift z=0.09(-0.04)(+0.03). In the source frame, the initial black hole masses are 36(-4)(+5)M⊙ and 29(-4)(+4)M⊙, and the final black hole mass is 62(-4)(+4)M⊙, with 3.0(-0.5)(+0.5)M⊙c(2) radiated in gravitational waves. All uncertainties define 90% credible intervals. These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found
            Is Open Access

            GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              On the variation of the initial mass function

              P. Kroupa (2001)
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Galaxies
                Galaxies
                MDPI AG
                2075-4434
                August 2022
                June 25 2022
                : 10
                : 4
                : 76
                Article
                10.3390/galaxies10040076
                b01b372f-53e7-4e5e-be7b-977db9e4204c
                © 2022

                https://creativecommons.org/licenses/by/4.0/

                History
                Product
                Self URI (article page): https://www.mdpi.com/2075-4434/10/4/76

                Comments

                Comment on this article