27
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Canine mammary cancer cells direct macrophages toward an intermediate activation state between M1/M2

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Canine mammary carcinoma is the most common cancer in female dogs and is often fatal due to the development of distance metastasis. The microenvironment of a tumour often contains abundant infiltrates of macrophages called tumour-associated macrophages (TAMs). TAMs express an activated phenotype, termed M2, which sustains proliferation of cancer cells, and has been correlated with poor clinical outcomes in human cancer patients. Cancer cells themselves have been implicated in stimulating the conversion of macrophages to a TAM with an M2 phenotype. This process has yet to be fully elucidated. Here we investigate the interplay between cancer cells and macrophages in the context of canine mammary carcinoma.

          Results

          We show that cancer cells inhibit lipopolysaccharide (LPS)-induced macrophage activation. Further, we show that macrophage associated proteins, colony-stimulating factor (CSF)-1 and C-C motif ligand (CCL)-2, stimulate macrophages and are responsible for the effects of cancer cells on macrophages. We suggest the existence of a feedback loop between macrophages and cancer cells; while cancer cells influence the phenotype of the TAMs through CSF-1 and CCL2, the macrophages induce canine mammary cancer cells to upregulate their own expression of the receptors for CSF-1 and CCL2 and increase the cancer cellular metabolic activity. However, these cytokines in isolation induce a phenotypic state in macrophages that is between M1 and M2 phenotypes.

          Conclusions

          Overall, our results demonstrate the extent to which canine mammary carcinoma cells influence the macrophage phenotype and the relevance of a feedback loop between these cells, involving CSF-1 and CCL2 as important mediators.

          Electronic supplementary material

          The online version of this article (doi:10.1186/s12917-015-0473-y) contains supplementary material, which is available to authorized users.

          Related collections

          Most cited references18

          • Record: found
          • Abstract: found
          • Article: not found

          MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity.

          Adipocytes secrete a variety of bioactive molecules that affect the insulin sensitivity of other tissues. We now show that the abundance of monocyte chemoattractant protein-1 (MCP-1) mRNA in adipose tissue and the plasma concentration of MCP-1 were increased both in genetically obese diabetic (db/db) mice and in WT mice with obesity induced by a high-fat diet. Mice engineered to express an MCP-1 transgene in adipose tissue under the control of the aP2 gene promoter exhibited insulin resistance, macrophage infiltration into adipose tissue, and increased hepatic triglyceride content. Furthermore, insulin resistance, hepatic steatosis, and macrophage accumulation in adipose tissue induced by a high-fat diet were reduced extensively in MCP-1 homozygous KO mice compared with WT animals. Finally, acute expression of a dominant-negative mutant of MCP-1 ameliorated insulin resistance in db/db mice and in WT mice fed a high-fat diet. These findings suggest that an increase in MCP-1 expression in adipose tissue contributes to the macrophage infiltration into this tissue, insulin resistance, and hepatic steatosis associated with obesity in mice.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Regulation of the innate and adaptive immune responses by Stat-3 signaling in tumor cells.

            Although tumor progression involves processes such as tissue invasion that can activate inflammatory responses, the immune system largely ignores or tolerates disseminated cancers. The mechanisms that block initiation of immune responses during cancer development are poorly understood. We report here that constitutive activation of Stat-3, a common oncogenic signaling pathway, suppresses tumor expression of proinflammatory mediators. Blocking Stat-3 in tumor cells increases expression of proinflammatory cytokines and chemokines that activate innate immunity and dendritic cells, leading to tumor-specific T-cell responses. In addition, constitutive Stat-3 activity induces production of pleiotropic factors that inhibit dendritic cell functional maturation. Tumor-derived factors inhibit dendritic cell maturation through Stat-3 activation in progenitor cells. Thus, inhibition of antitumor immunity involves a cascade of Stat-3 activation propagating from tumor to dendritic cells. We propose that tumor Stat-3 activity can mediate immune evasion by blocking both the production and sensing of inflammatory signals by multiple components of the immune system.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Monocyte chemoattractant protein 1 in obesity and insulin resistance.

              This study identifies monocyte chemoattractant protein 1 (MCP-1) as an insulin-responsive gene. It also shows that insulin induces substantial expression and secretion of MCP-1 both in vitro in insulin-resistant (IR) 3T3-L1 adipocytes and in vivo in IR obese mice (ob/ob). Thus, MCP-1 resembles other previously described genes (e.g., PAI-1 and SREBP-1c) that remain sensitive to insulin in IR states. The hyperinsulinemia that frequently accompanies obesity and insulin resistance may therefore contribute to the altered expression of these and other genes in insulin target tissues. In vivo studies also demonstrate that MCP-1 is overexpressed in obese mice compared with their lean controls, and that white adipose tissue is a major source of MCP-1. The elevated MCP-1 may alter adipocyte function because addition of MCP-1 to differentiated adipocytes in vitro decreases insulin-stimulated glucose uptake and the expression of several adipogenic genes (LpL, adipsin, GLUT-4, aP2, beta3-adrenergic receptor, and peroxisome proliferator-activated receptor gamma). These results suggest that elevated MCP-1 may induce adipocyte dedifferentiation and contribute to pathologies associated with hyperinsulinemia and obesity, including type II diabetes.
                Bookmark

                Author and article information

                Contributors
                breno.beirao@roslin.ed.ac.uk
                teresa.raposo@roslin.ed.ac.uk
                lisa.pang@roslin.ed.ac.uk
                david.argyle@roslin.ed.ac.uk
                Journal
                BMC Vet Res
                BMC Vet. Res
                BMC Veterinary Research
                BioMed Central (London )
                1746-6148
                15 July 2015
                15 July 2015
                2015
                : 11
                : 151
                Affiliations
                [ ]The Royal (Dick) School of Veterinary Studies and Roslin Institute, The University of Edinburgh, Easter Bush, Midlothian, Scotland EH25 9RG UK
                [ ]Department of Veterinary Sciences, Universidade de Trás-os-Montes e Alto Douro, 5001-801 Vila Real, Portugal
                Article
                473
                10.1186/s12917-015-0473-y
                4502937
                26174804
                b0284ea5-2efa-4451-a585-a2532cf2fc35
                © Beirão et al. 2015

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 20 February 2015
                : 8 July 2015
                Categories
                Research Article
                Custom metadata
                © The Author(s) 2015

                Veterinary medicine
                tumour-associated macrophages,dog,mammary,csf-1,ccl2,twist-1
                Veterinary medicine
                tumour-associated macrophages, dog, mammary, csf-1, ccl2, twist-1

                Comments

                Comment on this article