7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Microbial Remediation of Heavy Metals Contaminated Media by Bacillus megaterium and Rhizopus stolonifer

      , ,
      Scientific African
      Elsevier BV

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Heavy Metal Polluted Soils: Effect on Plants and Bioremediation Methods

          Soils polluted with heavy metals have become common across the globe due to increase in geologic and anthropogenic activities. Plants growing on these soils show a reduction in growth, performance, and yield. Bioremediation is an effective method of treating heavy metal polluted soils. It is a widely accepted method that is mostly carried outin situ; hence it is suitable for the establishment/reestablishment of crops on treated soils. Microorganisms and plants employ different mechanisms for the bioremediation of polluted soils. Using plants for the treatment of polluted soils is a more common approach in the bioremediation of heavy metal polluted soils. Combining both microorganisms and plants is an approach to bioremediation that ensures a more efficient clean-up of heavy metal polluted soils. However, success of this approach largely depends on the species of organisms involved in the process.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Toxicity and Bioremediation of Heavy Metals Contaminated Ecosystem from Tannery Wastewater: A Review

            The discharge of untreated tannery wastewater containing biotoxic substances of heavy metals in the ecosystem is one of the most important environmental and health challenges in our society. Hence, there is a growing need for the development of novel, efficient, eco-friendly, and cost-effective approach for the remediation of inorganic metals (Cr, Hg, Cd, and Pb) released into the environment and to safeguard the ecosystem. In this regard, recent advances in microbes-base heavy metal have propelled bioremediation as a prospective alternative to conventional techniques. Heavy metals are nonbiodegradable and could be toxic to microbes. Several microorganisms have evolved to develop detoxification mechanisms to counter the toxic effects of these inorganic metals. This present review offers a critical evaluation of bioremediation capacity of microorganisms, especially in the context of environmental protection. Furthermore, this article discussed the biosorption capacity with respect to the use of bacteria, fungi, biofilm, algae, genetically engineered microbes, and immobilized microbial cell for the removal of heavy metals. The use of biofilm has showed synergetic effects with many fold increase in the removal of heavy metals as sustainable environmental technology in the near future.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Bioremediation of heavy metals by microbial process

                Bookmark

                Author and article information

                Journal
                Scientific African
                Scientific African
                Elsevier BV
                24682276
                November 2020
                November 2020
                : 10
                : e00545
                Article
                10.1016/j.sciaf.2020.e00545
                b0285f98-5be8-4261-8d91-d9751c266ea2
                © 2020

                https://www.elsevier.com/tdm/userlicense/1.0/

                http://creativecommons.org/licenses/by-nc-nd/4.0/

                History

                Comments

                Comment on this article