7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Systemic lycopene as an adjunct to scaling and root planing in chronic periodontitis patients with type 2 diabetes mellitus

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background:

          Patients with type 2 diabetes have an increased prevalence of periodontitis and, in turn, periodontitis adversely affects the diabetic status. Oxidative stress plays a key role in affecting the pathophysiology of both the diseases and adjunctive systemic antioxidant therapy may have beneficial effect on the treatment outcome. This study was planned to compare the efficacy of systemic antioxidant therapy with lycopene as an adjunct to scaling and root planing versus scaling and root planing alone in chronic periodontitis patients with type 2 diabetes mellitus.

          Materials and Methods:

          40 diabetic subjects with periodontitis, attending the OP wing of the Department of Periodontics of a tertiary referral care hospital were randomized and equally divided into group A and group B. Diabetes status was recorded as per ADA guidelines and the periodontitis status as per American Academy of Periodontology (AAP) guidelines. Group A patients underwent scaling and root planing with administration of lycopene 8 mg and group B patients were treated with scaling and root planing alone. Clinical parameters like gingival index (GI), probing depth (PD), and clinical attachment level (CAL) were recorded. Serum markers, i.e. malondialdehyde (MDA) (TBARS assay) and C reactive protein (CRP) (ELISA), and glycated hemoglobin (HbA1c) levels were assessed at baseline and at 2 months and 6 months post-therapy.

          Results:

          Inter-group comparison showed group A giving statistically significant results in reducing mean serum MDA levels at 2 months and 6 months, and in reducing mean PD (mm) and mean HbA1c (%) levels at 2 months ( P < 0.005).

          Conclusion:

          Lycopene as an adjunctive treatment was effective in reducing oxidative stress and restoring altered glycemic levels. Further longitudinal studies with a larger sample size are required to establish the role of lycopene in the management of chronic periodontitis.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          Malondialdehyde and thiobarbituric acid-reactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury.

          Increasing appreciation of the causative role of oxidative injury in many disease states places great importance on the reliable assessment of lipid peroxidation. Malondialdehyde (MDA) is one of several low-molecular-weight end products formed via the decomposition of certain primary and secondary lipid peroxidation products. At low pH and elevated temperature, MDA readily participates in nucleophilic addition reaction with 2-thiobarbituric acid (TBA), generating a red, fluorescent 1:2 MDA:TBA adduct. These facts, along with the availability of facile and sensitive methods to quantify MDA (as the free aldehyde or its TBA derivative), have led to the routine use of MDA determination and, particularly, the "TBA test" to detect and quantify lipid peroxidation in a wide array of sample types. However, MDA itself participates in reactions with molecules other than TBA and is a catabolic substrate. Only certain lipid peroxidation products generate MDA (invariably with low yields), and MDA is neither the sole end product of fatty peroxide formation and decomposition nor a substance generated exclusively through lipid peroxidation. Many factors (e.g., stimulus for and conditions of peroxidation) modulate MDA formation from lipid. Additional factors (e.g., TBA-test reagents and constituents) have profound effects on test response to fatty peroxide-derived MDA. The TBA test is intrinsically nonspecific for MDA; nonlipid-related materials as well as fatty peroxide-derived decomposition products other than MDA are TBA positive. These and other considerations from the extensive literature on MDA. TBA reactivity, and oxidative lipid degradation support the conclusion that MDA determination and the TBA test can offer, at best, a narrow and somewhat empirical window on the complex process of lipid peroxidation. The MDA content and/or TBA reactivity of a system provides no information on the precise structures of the "MDA precursor(s)," their molecular origins, or the amount of each formed. Consequently, neither MDA determination nor TBA-test response can generally be regarded as a diagnostic index of the occurrence/extent of lipid peroxidation, fatty hydroperoxide formation, or oxidative injury to tissue lipid without independent chemical evidence of the analyte being measured and its source. In some cases, MDA/TBA reactivity is an indicator of lipid peroxidation; in other situations, no qualitative or quantitative relationship exists among sample MDA content, TBA reactivity, and fatty peroxide tone. Utilization of MDA analysis and/or the TBA test and interpretation of sample MDA content and TBA test response in studies of lipid peroxidation require caution, discretion, and (especially in biological systems) correlative data from other indices of fatty peroxide formation and decomposition.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            The role of reactive oxygen and antioxidant species in periodontal tissue destruction.

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Periodontal disease. The sixth complication of diabetes mellitus.

              H Löe (1993)
                Bookmark

                Author and article information

                Journal
                J Int Soc Prev Community Dent
                J Int Soc Prev Community Dent
                JISPCD
                Journal of International Society of Preventive & Community Dentistry
                Medknow Publications & Media Pvt Ltd (India )
                2231-0762
                2250-1002
                May 2015
                : 5
                : Suppl 1
                : S25-S31
                Affiliations
                [1]Department of Periodontology, Panineeya Mahavidyalaya Institute of Dental Sciences and Research Centre, Hyderabad, Andhra Pradesh, India
                Author notes
                Corresponding author (email: < dr.manasa5986@ 123456gmail.com >) Dr. Manasa Ambati, Panineeya Mahavidyalaya Institute of Dental Sciences and Research Centre, Road No. 5, Kamala Nagar, Dilsukh Nagar, Hyderabad - 500 060, Andhra Pradesh, India
                Article
                JISPCD-5-25
                10.4103/2231-0762.156520
                4428016
                25984464
                b0398764-640d-46ee-8090-b32cb7a39ddb
                Copyright: © Journal of International Society of Preventive and Community Dentistry

                This is an open-access article distributed under the terms of the Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                Categories
                Original Article

                antioxidant,diabetes,oxidative stress,periodontitis
                antioxidant, diabetes, oxidative stress, periodontitis

                Comments

                Comment on this article