1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Aldosterone Induces DNA Damage and Activation of Nrf2 Mainly in Tubuli of Mouse Kidneys

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Hypertensive patients have an increased risk of developing chronic kidney disease (CKD). Many of these patients have increased levels of the blood pressure regulating mineralocorticoid aldosterone. As a protection against aldosterone-induced damage, kidney cells can upregulate key regulators of the antioxidant defense, such as nuclear factor-erythroid-2-related factor 2 (Nrf2). In the present study aldosterone-induced kidney damage and Nrf2 activation in kidney cells of mice treated with three different concentrations of aldosterone for 4 weeks was localized. Increased albumin and neutrophil gelatinase-associated lipocalin (NGAL) in urine revealed an impaired kidney function of the aldosterone-infused mice. Localization of aldosterone-induced oxidative damage (in the form of DNA lesions) in specific kidney cells showed an increase in proximal tubuli and to an even greater extend in distal tubuli. Phosphorylated Nrf2 was increased in distal tubule cells after aldosterone-infusion. Nrf2 activation in proximal tubuli or in glomeruli after aldosterone-treatment could not be observed. Nrf2 target genes and proteins analyzed, paradoxically, showed a downregulation in the whole kidney. Aldosterone-treated mice exhibited an increased kidney injury and DNA damage in distal and proximal tubuli. Nrf2 seemed only to be specifically activated in distal tubule cells, where we also detected the highest amount of oxidative damage.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          Regulation of Nrf2-an update.

          Nrf2:INrf2 (Keap1) are cellular sensors of oxidative and electrophilic stress. Nrf2 is a nuclear factor that controls the expression and coordinated induction of a battery of genes that encode detoxifying enzymes, drug transporters, antiapoptotic proteins, and proteasomes. In the basal state, Nrf2 is constantly degraded in the cytoplasm by its inhibitor, INrf2. INrf2 functions as an adapter for Cul3/Rbx1 E3 ubiquitin ligase-mediated degradation of Nrf2. Chemicals, including antioxidants, tocopherols including α-tocopherol (vitamin E), and phytochemicals, and radiation antagonize the Nrf2:INrf2 interaction and lead to the stabilization and activation of Nrf2. The signaling events involve preinduction, induction, and postinduction responses that tightly control Nrf2 activation and repression back to the basal state. Oxidative/electrophilic signals activate unknown tyrosine kinases in a preinduction response that phosphorylates specific residues on Nrf2 negative regulators, INrf2, Fyn, and Bach1, leading to their nuclear export, ubiquitination, and degradation. This prepares nuclei for unhindered import of Nrf2. Oxidative/electrophilic modification of INrf2 cysteine 151 followed by PKC phosphorylation of Nrf2 serine 40 in the induction response results in the escape or release of Nrf2 from INrf2. Nrf2 is thus stabilized and translocates to the nucleus, resulting in a coordinated activation of gene expression. This is followed by a postinduction response that controls the "switching off" of Nrf2-activated gene expression. GSK3β, under the control of AKT and PI3K, phosphorylates Fyn, leading to Fyn nuclear localization. Fyn phosphorylates Nrf2 Y568, resulting in nuclear export and degradation of Nrf2. The activation and repression of Nrf2 provide protection against oxidative/electrophilic stress and associated diseases, including cancer. However, deregulation of INrf2 and Nrf2 due to mutations may lead to nuclear accumulation of Nrf2 that reduces apoptosis and promotes oncogenesis and drug resistance. Copyright © 2013 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Transcription factor Nrf2 is protective during ischemic and nephrotoxic acute kidney injury in mice.

            Oxidative stress is involved in acute kidney injury due to ischemia-reperfusion and chemotherapy-induced nephrotoxicity. To investigate their basic mechanisms we studied the role of nuclear factor-erythroid 2-p45-related factor 2 (Nrf2), a redox-sensitive transcription factor that regulates expression of several antioxidant and cytoprotective genes. We compared the responses of Nrf2-knockout mice and their wild-type littermates in established mouse models of ischemia-reperfusion injury and cisplatin-induced nephrotoxicity. Several Nrf2-regulated genes encoding antioxidant enzymes/proteins were significantly upregulated in the kidneys of wild type but not Nrf2-knockout mice following renal ischemia. Renal function, histology, vascular permeability, and survival were each significantly worse in the Nrf2 knockout mice. Further, proinflammatory cytokine and chemokine expression tended to increase after ischemia in the knockout compared to the wild-type mice. Treatment of the knockout mice with the antioxidants N-acetyl-cysteine or glutathione improved renal function. The knockout mice were more susceptible to cisplatin-induced nephrotoxicity, and this was blunted by N-acetyl-cysteine pretreatment. Our study demonstrates that Nrf2-deficiency enhances susceptibility to both ischemic and nephrotoxic acute kidney injury, and identifies this transcription factor as a potential therapeutic target in these injuries.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Mineralocorticoid receptor antagonists and kidney diseases: pathophysiological basis

                Bookmark

                Author and article information

                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                30 June 2020
                July 2020
                : 21
                : 13
                : 4679
                Affiliations
                Institute of Toxicology, University of Düsseldorf, 40225 Düsseldorf, Germany; Balhorn.Ronja@ 123456hhu.de (R.B.); Christina.Hartmann.2@ 123456hhu.de (C.H.)
                Author notes
                [* ]Correspondence: schupp@ 123456hhu.de ; Tel.: +49-211-8113001
                Article
                ijms-21-04679
                10.3390/ijms21134679
                7370281
                32630085
                b03c7706-a704-455b-ba10-0f6b4befa842
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 25 May 2020
                : 28 June 2020
                Categories
                Article

                Molecular biology
                aldosterone,nrf2,kidney damage,chronic kidney disease,distal tubuli
                Molecular biology
                aldosterone, nrf2, kidney damage, chronic kidney disease, distal tubuli

                Comments

                Comment on this article