47
views
0
recommends
+1 Recommend
2 collections
    1
    shares

      To learn more about AK Journals, please click here

      The APC waiver has been extended to also apply to manuscripts submitted until March 31, 2024.

      To submit to the journal, please click here.

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Morphological and immunological characterization of primary cultured chicken caecal epithelial cells

      research-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cell cultures are models in biological and medical research to understand physiological and pathological processes. Cell lines are not always available depending on cell type and required species. In addition, the immortalization process often affects cell biology. Primary cells generally maintain a greater degree of similarity in short-term culture to the cells in tissue. Goal of this study was to verify the suitability of chicken primary epithelial caecal cells (PECCs) for in vitro investigations of host‒pathogen interactions. Epithelial nature of PECCs was confirmed by detection of tight and adherens junctions and cobblestone-like cell morphology. Sialic acids distribution was similar to that in caecal cyrosections. To understand the capacity of PECCs to respond to microbial challenges, the Toll-like receptors (TLRs) repertoire was determined. Exposure of PECCs to polyinosinic-polycytidylic acid (poly(I:C)) or lipopolysaccharide (LPS) led to upregulation of type I and III interferon (IFN) as well as interleukin (IL-) 1β, IL-6 and IL-8 mRNA expression. Overall, the PECCs showed properties of polarized epithelial cells. The presence of TLRs, their differential expression, as well as pattern recognition receptor dependent immune responses enable PECCs to act as suitable in vitro model for host‒pathogen interaction studies, which are difficult to conduct under in vivo conditions.

          Most cited references68

          • Record: found
          • Abstract: found
          • Article: not found

          The cell-cell adhesion molecule E-cadherin.

          This review is dedicated to E-cadherin, a calcium-dependent cell-cell adhesion molecule with pivotal roles in epithelial cell behavior, tissue formation, and suppression of cancer. As founder member of the cadherin superfamily, it has been extensively investigated. We summarize the structure and regulation of the E-cadherin gene and transcript. Models for E-cadherin-catenin complexes and cell junctions are presented. The structure of the E-cadherin protein is discussed in view of the diverse functions of this remarkable protein. Homophilic and heterophilic adhesion are compared, including the role of E-cadherin as a receptor for pathogens. The complex post-translational processing of E-cadherin is reviewed, as well as the many signaling activities. The role of E-cadherin in embryonic development and morphogenesis is discussed for several animal models. Finally, we review the multiple mechanisms that disrupt E-cadherin function in cancer: inactivating somatic and germline mutations, epigenetic silencing by DNA methylation and epithelial to mesenchymal transition-inducing transcription factors, and dysregulated protein processing.
            • Record: found
            • Abstract: found
            • Article: not found

            The evolution of vertebrate Toll-like receptors.

            The complete sequences of Takifugu Toll-like receptor (TLR) loci and gene predictions from many draft genomes enable comprehensive molecular phylogenetic analysis. Strong selective pressure for recognition of and response to pathogen-associated molecular patterns has maintained a largely unchanging TLR recognition in all vertebrates. There are six major families of vertebrate TLRs. This repertoire is distinct from that of invertebrates. TLRs within a family recognize a general class of pathogen-associated molecular patterns. Most vertebrates have exactly one gene ortholog for each TLR family. The family including TLR1 has more species-specific adaptations than other families. A major family including TLR11 is represented in humans only by a pseudogene. Coincidental evolution plays a minor role in TLR evolution. The sequencing phase of this study produced finished genomic sequences for the 12 Takifugu rubripes TLRs. In addition, we have produced >70 gene models, including sequences from the opossum, chicken, frog, dog, sea urchin, and sea squirt.
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Re-calculating the cost of coccidiosis in chickens

              Coccidiosis, caused by Eimeria species parasites, has long been recognised as an economically significant disease of chickens. As the global chicken population continues to grow, and its contribution to food security intensifies, it is increasingly important to assess the impact of diseases that compromise chicken productivity and welfare. In 1999, Williams published one of the most comprehensive estimates for the cost of coccidiosis in chickens, featuring a compartmentalised model for the costs of prophylaxis, treatment and losses, indicating a total cost in excess of £38 million in the United Kingdom (UK) in 1995. In the 25 years since this analysis the global chicken population has doubled and systems of chicken meat and egg production have advanced through improved nutrition, husbandry and selective breeding of chickens, and wider use of anticoccidial vaccines. Using data from industry representatives including veterinarians, farmers, production and health experts, we have updated the Williams model and estimate that coccidiosis in chickens cost the UK £99.2 million in 2016 (range £73.0–£125.5 million). Applying the model to data from Brazil, Egypt, Guatemala, India, New Zealand, Nigeria and the United States resulted in estimates that, when extrapolated by geographical region, indicate a global cost of ~ £10.4 billion at 2016 prices (£7.7–£13.0 billion), equivalent to £0.16/chicken produced. Understanding the economic costs of livestock diseases can be advantageous, providing baselines to evaluate the impact of different husbandry systems and interventions. The updated cost of coccidiosis in chickens will inform debates on the value of chemoprophylaxis and development of novel anticoccidial vaccines.

                Author and article information

                Contributors
                Journal
                Eur J Microbiol Immunol (Bp)
                Eur J Microbiol Immunol (Bp)
                EUJMI
                European Journal of Microbiology & Immunology
                Akadémiai Kiadó (Budapest )
                2062-509X
                2062-8633
                21 June 2024
                September 2024
                : 14
                : 3
                : 261-271
                Affiliations
                [1 ]Clinic for Poultry, University of Veterinary Medicine Hannover, Foundation , Buenteweg 17, 30559 Hanover, Germany
                [2 ]Department of Biology, Peter Medawar Building, University of Oxford , Oxford OX1 3PS, United Kingdom
                Author notes
                [* ]Corresponding author. Tel.: +49 511 953 8778. E-mail: silke.rautenschlein@ 123456tiho-hannover.de
                Author information
                https://orcid.org/0000-0002-8177-3755
                Article
                10.1556/1886.2024.00053
                11393646
                38905002
                b047fc5e-3ba7-4090-b6da-c5b5ddf6ea32
                © 2024 The Author(s)

                Open Access statement. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License ( https://creativecommons.org/licenses/by-nc/4.0/), which permits unrestricted use, distribution, and reproduction in any medium for non-commercial purposes, provided the original author and source are credited, a link to the CC License is provided, and changes – if any – are indicated.

                History
                : 18 April 2024
                : 03 June 2024
                Page count
                Figures: 7, Tables: 1, Equations: 0, References: 63, Pages: 11
                Funding
                Funded by: EMIDA ERANet, DIFAGH
                Funded by: Federal Ministry of Education and Research
                Award ID: 031A097A
                Funded by: Biotechnology and Biological Sciences Research Council
                Award ID: BB/K004468/1
                Categories
                Article

                intestinal epithelial cells,chicken,characterization,tlr repertoire,interleukin,interferon

                Comments

                Comment on this article

                Related Documents Log