13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Genetic landscape of long noncoding RNA (lncRNAs) in glioblastoma: identification of complex lncRNA regulatory networks and clinically relevant lncRNAs in glioblastoma

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The major part of the genome that was previously called junk DNA has been shown to be dynamically transcribed to produce non-coding RNAs. Among them, the long non-coding RNAs (lncRNA) play diverse roles in the cellular context and are therefore involved in various diseases like cancer. LncRNA transcript profiling of glioblastoma ( n = 19) and control brain samples ( n = 9) identified 2,774 and 5,016 lncRNAs to be upregulated and downregulated in GBMs respectively. Correlation analysis of differentially regulated lncRNAs with mRNA and lncRNA identified several lncRNAs that may potentially regulate many tumor relevant mRNAs and lncRNAs both at nearby locations ( cis) and far locations ( trans). Integration of our data set with TCGA GBM RNA-Seq data ( n = 172) revealed many lncRNAs as a host as well as decoy for many tumor regulated miRNAs. The expression pattern of seven lncRNAs- HOXD-AS2, RP4-792G4.2, CRNDE, ANRIL, RP11-389G6.3, RP11-325122.2 and AC123886.2 was validated by TCGA RNA-Seq data and RT-qPCR. Silencing ANRIL, a GBM upregulated lncRNA, inhibited glioma cell proliferation and colony growth. Cox regression analysis identified several prognostic lncRNAs. An lncRNA risk score derived from five lnRNAs-RP6-99M1.2, SOX21-AS1, CTD-2127H9.1, RP11-375B1.3 and RP3-449M8.9 predicted survival independent of all other markers. Multivariate cox regression analysis involving G-CIMP, IDH1 mutation, MGMT promoter methylation identified lncRNA risk score to be an independent poor predictor of GBM survival. The lncRNA risk score also stratified GBM patients into low and high risk with significant survival difference. Thus our study demonstrates the importance of lncRNA in GBM pathology and underscores the potential possibility of targeting lncRNA for GBM therapy.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found

          A coding-independent function of gene and pseudogene mRNAs regulates tumour biology

          The canonical role of messenger RNA (mRNA) is to deliver protein-coding information to sites of protein synthesis. However, given that microRNAs bind to RNAs, we hypothesized that RNAs possess a biological role in cancer cells that relies upon their ability to compete for microRNA binding and is independent of their protein-coding function. As a paradigm for the protein-coding-independent role of RNAs, we describe the functional relationship between the mRNAs produced by the PTEN tumour suppressor gene and its pseudogene (PTENP1) and the critical consequences of this interaction. We find that PTENP1 is biologically active as determined by its ability to regulate cellular levels of PTEN, and that it can exert a growth-suppressive role. We also show that PTENP1 locus is selectively lost in human cancer. We extend our analysis to other cancer-related genes that possess pseudogenes, such as oncogenic KRAS. Further, we demonstrate that the transcripts of protein coding genes such as PTEN are also biologically active. Together, these findings attribute a novel biological role to expressed pseudogenes, as they can regulate coding gene expression, and reveal a non-coding function for mRNAs.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Identification of mammalian microRNA host genes and transcription units.

            To derive a global perspective on the transcription of microRNAs (miRNAs) in mammals, we annotated the genomic position and context of this class of noncoding RNAs (ncRNAs) in the human and mouse genomes. Of the 232 known mammalian miRNAs, we found that 161 overlap with 123 defined transcription units (TUs). We identified miRNAs within introns of 90 protein-coding genes with a broad spectrum of molecular functions, and in both introns and exons of 66 mRNA-like noncoding RNAs (mlncRNAs). In addition, novel families of miRNAs based on host gene identity were identified. The transcription patterns of all miRNA host genes were curated from a variety of sources illustrating spatial, temporal, and physiological regulation of miRNA expression. These findings strongly suggest that miRNAs are transcribed in parallel with their host transcripts, and that the two different transcription classes of miRNAs ('exonic' and 'intronic') identified here may require slightly different mechanisms of biogenesis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Molecular interplay of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of INK4a.

              Expression of the INK4b/ARF/INK4a tumor suppressor locus in normal and cancerous cell growth is controlled by methylation of histone H3 at lysine 27 (H3K27me) as directed by the Polycomb group proteins. The antisense noncoding RNA ANRIL of the INK4b/ARF/INK4a locus is also important for expression of the protein-coding genes in cis, but its mechanism has remained elusive. Here we report that chromobox 7 (CBX7) within the polycomb repressive complex 1 binds to ANRIL, and both CBX7 and ANRIL are found at elevated levels in prostate cancer tissues. In concert with H3K27me recognition, binding to RNA contributes to CBX7 function, and disruption of either interaction impacts the ability of CBX7 to repress the INK4b/ARF/INK4a locus and control senescence. Structure-guided analysis reveals the molecular interplay between noncoding RNA and H3K27me as mediated by the conserved chromodomain. Our study suggests a mechanism by which noncoding RNA participates directly in epigenetic transcriptional repression. Copyright (c) 2010 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Oncotarget
                Oncotarget
                Oncotarget
                ImpactJ
                Oncotarget
                Impact Journals LLC
                1949-2553
                3 July 2018
                3 July 2018
                : 9
                : 51
                : 29548-29564
                Affiliations
                1 Department of Microbiology and Cell Biology, Indian Institute of Science, 560012 Bangalore, India
                2 Sri Satya Sai Institute of Higher Medical Sciences, 560066 Bangalore, India
                3 Department of Neurosurgery, National Institute of Mental Health and Neuro Sciences, 560029 Bangalore, India
                4 Department of Neuropathology, National Institute of Mental Health and Neuro Sciences, 560029 Bangalore, India
                5 Department of Bio-Medical Sciences, School of Biosciences and Technology, VIT University, 632014 Vellore, India
                Author notes
                Correspondence to: Kumaravel Somasundaram, ksomasundaram1@ 123456gmail.com
                [*]

                These authors contributed equally to this work

                Article
                25434
                10.18632/oncotarget.25434
                6049862
                30038703
                b05407e0-922c-47eb-9e7f-79eceaef88b3
                Copyright: © 2018 Paul et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0 (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 26 November 2017
                : 20 April 2018
                Categories
                Research Paper

                Oncology & Radiotherapy
                lncrna,glioblastoma,cerna,anril,cdkn2a-as1
                Oncology & Radiotherapy
                lncrna, glioblastoma, cerna, anril, cdkn2a-as1

                Comments

                Comment on this article