5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Multilocus ribosomal RNA phylogeny of the leaf beetles (Chrysomelidae)

      , ,
      Cladistics
      Wiley

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          BIONJ: an improved version of the NJ algorithm based on a simple model of sequence data.

          O. Gascuel (1997)
          We propose an improved version of the neighbor-joining (NJ) algorithm of Saitou and Nei. This new algorithm, BIONJ, follows the same agglomerative scheme as NJ, which consists of iteratively picking a pair of taxa, creating a new mode which represents the cluster of these taxa, and reducing the distance matrix by replacing both taxa by this node. Moreover, BIONJ uses a simple first-order model of the variances and covariances of evolutionary distance estimates. This model is well adapted when these estimates are obtained from aligned sequences. At each step it permits the selection, from the class of admissible reductions, of the reduction which minimizes the variance of the new distance matrix. In this way, we obtain better estimates to choose the pair of taxa to be agglomerated during the next steps. Moreover, in comparison with NJ's estimates, these estimates become better and better as the algorithm proceeds. BIONJ retains the good properties of NJ--especially its low run time. Computer simulations have been performed with 12-taxon model trees to determine BIONJ's efficiency. When the substitution rates are low (maximum pairwise divergence approximately 0.1 substitutions per site) or when they are constant among lineages, BIONJ is only slightly better than NJ. When the substitution rates are higher and vary among lineages,BIONJ clearly has better topological accuracy. In the latter case, for the model trees and the conditions of evolution tested, the topological error reduction is on the average around 20%. With highly-varying-rate trees and with high substitution rates (maximum pairwise divergence approximately 1.0 substitutions per site), the error reduction may even rise above 50%, while the probability of finding the correct tree may be augmented by as much as 15%.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Butterflies and Plants: A Study in Coevolution

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              The Parsimony Ratchet, a New Method for Rapid Parsimony Analysis

                Bookmark

                Author and article information

                Journal
                Cladistics
                Cladistics
                Wiley
                0748-3007
                1096-0031
                February 2008
                February 2008
                : 24
                : 1
                : 34-50
                Article
                10.1111/j.1096-0031.2007.00167.x
                b058a89d-62a9-4555-8590-f36fcb7834e5
                © 2008

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article