11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Prevalence, population structure, distribution of serotypes, pilus islands and resistance genes among erythromycin-resistant colonizing and invasive Streptococcus agalactiae isolates recovered from pregnant and non-pregnant women in Isfahan, Iran

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The information on antibiotic resistance and molecular features of Group B Streptococcus (GBS) are essential for epidemiological purposes as well as vaccine development. Therefore, we aimed to assess the antimicrobial resistance profiles and molecular characteristics of GBS isolates in Isfahan, Iran. A total number of 72 colonizing and invasive GBS were collected from pregnant and non-pregnant women. The GBS isolates were analyzed for resistance profiles, capsular genotyping, and detection of PI-1, PI-2a, PI-2b, hvgA, ermB, ermTR, lnuB and, mefA genes. Besides, erythromycin-resistant strains were subjected to multilocus sequence typing (MLST).

          Results

          The prevalence of colonizing and invasive GBS were 11 and 0.05%, respectively. The frequency of capsular serotypes was as follows: III (26.3%), Ia (20.83%), Ib and V (each 15.2%), IV (9.7%), II (8.3%), VII (2.7%), and VI (1.3%). Overall frequencies of PIs were as follows: PI-1, 37.5%, PI-1 + PI-2a, 30.5%, PI-1 + PI-2b, 29.1% and PI-2b, 2.7%. Two maternal colonizing GBS (2.6%) were hvgA positive and were belonged to ST-17/CPS-III/PI-1 + PI-2b lineage. Among 30(41.6%) erythromycin resistant GBS, 21 isolates (70%) harbored ermB gene, followed by ermTR (23.3%) and mefA (10%). One clindamycin-resistant isolate harbored the lnuB gene. MLST analysis revealed the following five clonal complexes (CCs) and nine STs: (CC-19/ST-335, ST-19, and ST-197), (CC-12/ST-43, ST-12), (CC-23/ST-163, ST-23), (CC-17/ST-17) and (CC-4/ST-16).

          Conclusion

          The study shows an alarmingly high prevalence of erythromycin-resistant GBS in Iran. In addition, we report dissemination of ST-335/CPS-III clone associated with tetracycline and erythromycin resistance in our region. The distribution of capsular and pilus genotypes varies between invasive and colonizing GBS that could be helpful for vaccine development.

          Related collections

          Most cited references60

          • Record: found
          • Abstract: found
          • Article: not found

          Mechanisms of resistance to macrolides and lincosamides: nature of the resistance elements and their clinical implications.

          Resistance to macrolides and lincosamides is increasingly reported in clinical isolates of gram-positive bacteria. The multiplicity of mechanisms of resistance, which include ribosomal modification, efflux of the antibiotic, and drug inactivation, results in a variety of phenotypes of resistance. There is controversy concerning the clinical relevance of in vitro macrolide resistance. Recent data, however, have shown that eradication of bacteria correlates with clinical outcome of acute otitis media in children and that macrolide therapy results in delayed eradication of macrolide-resistant pneumococci. These results support the need for in vitro detection of macrolide resistance and correct interpretation of susceptibility tests to guide therapy.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Horizontal transfer of antibiotic resistance genes in clinical environments

            A global medical crisis is unfolding as antibiotics lose effectiveness against a growing number of bacterial pathogens. Horizontal gene transfer (HGT) contributes significantly to the rapid spread of resistance, yet the transmission dynamics of genes that confer antibiotic resistance are poorly understood. Multiple mechanisms of HGT liberate genes from normal vertical inheritance. Conjugation by plasmids, transduction by bacteriophages, and natural transformation by extracellular DNA each allow genetic material to jump between strains and species. Thus, HGT adds an important dimension to infectious disease whereby an antibiotic resistance gene (ARG) can be the agent of an outbreak by transferring resistance to multiple unrelated pathogens. Here, we review the small number of cases where HGT has been detected in clinical environments. We discuss differences and synergies between the spread of plasmid-borne and chromosomal ARGs, with a special consideration of the difficulties of detecting transduction and transformation by routine genetic diagnostics. We highlight how 11 of the top 12 priority antibiotic-resistant pathogens are known or predicted to be naturally transformable, raising the possibility that this mechanism of HGT makes significant contributions to the spread of ARGs. HGT drives the evolution of untreatable "superbugs" by concentrating ARGs together in the same cell, thus HGT must be included in strategies to prevent the emergence of resistant organisms in hospitals and other clinical settings.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Estimates of the Burden of Group B Streptococcal Disease Worldwide for Pregnant Women, Stillbirths, and Children

              Group B Streptococcus is an important cause of disease in pregnant women, stillbirth, and infants. These first estimates show the magnitude and the potential impact of maternal vaccination.
                Bookmark

                Author and article information

                Contributors
                nasr@hlth.mui.ac.ir
                Journal
                BMC Microbiol
                BMC Microbiol
                BMC Microbiology
                BioMed Central (London )
                1471-2180
                4 May 2021
                4 May 2021
                2021
                : 21
                : 139
                Affiliations
                [1 ]GRID grid.411036.1, ISNI 0000 0001 1498 685X, Department of Microbiology, School of Medicine, , Isfahan University of Medical Sciences, ; Hezar-Jerib Street, Isfahan, Iran
                [2 ]GRID grid.411036.1, ISNI 0000 0001 1498 685X, Department of Gynecology and Obstetrics, Al-Zahra university Hospital, , Isfahan University of Medical Sciences, ; Isfahan, Iran
                [3 ]GRID grid.411036.1, ISNI 0000 0001 1498 685X, Infectious disease and tropical medicine research center, , Isfahan University of Medical Sciences, ; Isfahan, Iran
                Article
                2186
                10.1186/s12866-021-02186-2
                8096152
                33947330
                b05a7ca5-8ab9-4bb0-9863-44b800a97927
                © The Author(s) 2021

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 11 January 2021
                : 6 April 2021
                Categories
                Research
                Custom metadata
                © The Author(s) 2021

                Microbiology & Virology
                streptococcus agalactiae,capsular genotyping,pilus islands,antibiotic susceptibility,mlst,iran

                Comments

                Comment on this article