27
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Mathematical Formulation of Multi-Layer Networks

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A network representation is useful for describing the structure of a large variety of complex systems. However, most real and engineered systems have multiple subsystems and layers of connectivity, and the data produced by such systems is very rich. Achieving a deep understanding of such systems necessitates generalizing "traditional" network theory, and the newfound deluge of data now makes it possible to test increasingly general frameworks for the study of networks. In particular, although adjacency matrices are useful to describe traditional single-layer networks, such a representation is insufficient for the analysis and description of multiplex and time-dependent networks. One must therefore develop a more general mathematical framework to cope with the challenges posed by multi-layer complex systems. In this paper, we introduce a tensorial framework to study multi-layer networks, and we discuss the generalization of several important network descriptors and dynamical processes --including degree centrality, clustering coefficients, eigenvector centrality, modularity, Von Neumann entropy, and diffusion-- for this framework. We examine the impact of different choices in constructing these generalizations, and we illustrate how to obtain known results for the special cases of single-layer and multiplex networks. Our tensorial approach will be helpful for tackling pressing problems in multi-layer complex systems, such as inferring who is influencing whom (and by which media) in multichannel social networks and developing routing techniques for multimodal transportation systems.

          Related collections

          Most cited references9

          • Record: found
          • Abstract: found
          • Article: not found
          Is Open Access

          Community detection in graphs

          The modern science of networks has brought significant advances to our understanding of complex systems. One of the most relevant features of graphs representing real systems is community structure, or clustering, i. e. the organization of vertices in clusters, with many edges joining vertices of the same cluster and comparatively few edges joining vertices of different clusters. Such clusters, or communities, can be considered as fairly independent compartments of a graph, playing a similar role like, e. g., the tissues or the organs in the human body. Detecting communities is of great importance in sociology, biology and computer science, disciplines where systems are often represented as graphs. This problem is very hard and not yet satisfactorily solved, despite the huge effort of a large interdisciplinary community of scientists working on it over the past few years. We will attempt a thorough exposition of the topic, from the definition of the main elements of the problem, to the presentation of most methods developed, with a special focus on techniques designed by statistical physicists, from the discussion of crucial issues like the significance of clustering and how methods should be tested and compared against each other, to the description of applications to real networks.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Competition and the Structure of Industrial Society: Reply to Braithwaite

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Community Structure in Time-Dependent, Multiscale, and Multiplex Networks

              Network science is an interdisciplinary endeavor, with methods and applications drawn from across the natural, social, and information sciences. A prominent problem in network science is the algorithmic detection of tightly-connected groups of nodes known as communities. We developed a generalized framework of network quality functions that allowed us to study the community structure of arbitrary multislice networks, which are combinations of individual networks coupled through links that connect each node in one network slice to itself in other slices. This framework allows one to study community structure in a very general setting encompassing networks that evolve over time, have multiple types of links (multiplexity), and have multiple scales.
                Bookmark

                Author and article information

                Journal
                18 July 2013
                2013-09-02
                Article
                10.1103/PhysRevX.3.041022
                1307.4977
                b05ecf4d-c631-4831-b2ba-53f5d1d9a4eb

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                Phys. Rev. X 3, 041022 (2013)
                15 pages, 5 figures
                physics.soc-ph cond-mat.dis-nn math-ph math.MP

                Comments

                Comment on this article