Blog
About

  • Record: found
  • Abstract: found
  • Article: found

The genetic landscapes of autism spectrum disorders.

Annual review of genomics and human genetics

Polymorphism, Single Nucleotide, Mutation, Humans, Genetic Predisposition to Disease, DNA Copy Number Variations, genetics, Child Development Disorders, Pervasive, physiology, Brain, Animals

Read this article at

ScienceOpenPublisherPubMed
Bookmark
      There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

      Abstract

      The autism spectrum disorders (ASD) are characterized by impairments in social interaction and stereotyped behaviors. For the majority of individuals with ASD, the causes of the disorder remain unknown; however, in up to 25% of cases, a genetic cause can be identified. Chromosomal rearrangements as well as rare and de novo copy-number variants are present in ∼10-20% of individuals with ASD, compared with 1-2% in the general population and/or unaffected siblings. Rare and de novo coding-sequence mutations affecting neuronal genes have also been identified in ∼5-10% of individuals with ASD. Common variants such as single-nucleotide polymorphisms seem to contribute to ASD susceptibility, but, taken individually, their effects appear to be small. Despite a heterogeneous genetic landscape, the genes implicated thus far-which are involved in chromatin remodeling, metabolism, mRNA translation, and synaptic function-seem to converge in common pathways affecting neuronal and synaptic homeostasis. Animal models developed to study these genes should lead to a better understanding of the diversity of the genetic landscapes of ASD.

      Related collections

      Most cited references 126

      • Record: found
      • Abstract: found
      • Article: not found

      Finding the missing heritability of complex diseases.

      Genome-wide association studies have identified hundreds of genetic variants associated with complex human diseases and traits, and have provided valuable insights into their genetic architecture. Most variants identified so far confer relatively small increments in risk, and explain only a small proportion of familial clustering, leading many to question how the remaining, 'missing' heritability can be explained. Here we examine potential sources of missing heritability and propose research strategies, including and extending beyond current genome-wide association approaches, to illuminate the genetics of complex diseases and enhance its potential to enable effective disease prevention or treatment.
        Bookmark
        • Record: found
        • Abstract: found
        • Article: not found

        Common SNPs explain a large proportion of the heritability for human height.

        SNPs discovered by genome-wide association studies (GWASs) account for only a small fraction of the genetic variation of complex traits in human populations. Where is the remaining heritability? We estimated the proportion of variance for human height explained by 294,831 SNPs genotyped on 3,925 unrelated individuals using a linear model analysis, and validated the estimation method with simulations based on the observed genotype data. We show that 45% of variance can be explained by considering all SNPs simultaneously. Thus, most of the heritability is not missing but has not previously been detected because the individual effects are too small to pass stringent significance tests. We provide evidence that the remaining heritability is due to incomplete linkage disequilibrium between causal variants and genotyped SNPs, exacerbated by causal variants having lower minor allele frequency than the SNPs explored to date.
          Bookmark
          • Record: found
          • Abstract: found
          • Article: not found

          Strong association of de novo copy number mutations with autism.

          We tested the hypothesis that de novo copy number variation (CNV) is associated with autism spectrum disorders (ASDs). We performed comparative genomic hybridization (CGH) on the genomic DNA of patients and unaffected subjects to detect copy number variants not present in their respective parents. Candidate genomic regions were validated by higher-resolution CGH, paternity testing, cytogenetics, fluorescence in situ hybridization, and microsatellite genotyping. Confirmed de novo CNVs were significantly associated with autism (P = 0.0005). Such CNVs were identified in 12 out of 118 (10%) of patients with sporadic autism, in 2 out of 77 (3%) of patients with an affected first-degree relative, and in 2 out of 196 (1%) of controls. Most de novo CNVs were smaller than microscopic resolution. Affected genomic regions were highly heterogeneous and included mutations of single genes. These findings establish de novo germline mutation as a more significant risk factor for ASD than previously recognized.
            Bookmark

            Author and article information

            Journal
            10.1146/annurev-genom-091212-153431
            23875794

            Comments

            Comment on this article