Blog
About

79
views
0
recommends
+1 Recommend
1 collections
    1
    shares
      • Record: found
      • Abstract: found
      • Article: found

      The genetic landscapes of autism spectrum disorders.

      Annual review of genomics and human genetics

      Polymorphism, Single Nucleotide, Mutation, Humans, Genetic Predisposition to Disease, DNA Copy Number Variations, genetics, Child Development Disorders, Pervasive, physiology, Brain, Animals

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The autism spectrum disorders (ASD) are characterized by impairments in social interaction and stereotyped behaviors. For the majority of individuals with ASD, the causes of the disorder remain unknown; however, in up to 25% of cases, a genetic cause can be identified. Chromosomal rearrangements as well as rare and de novo copy-number variants are present in ∼10-20% of individuals with ASD, compared with 1-2% in the general population and/or unaffected siblings. Rare and de novo coding-sequence mutations affecting neuronal genes have also been identified in ∼5-10% of individuals with ASD. Common variants such as single-nucleotide polymorphisms seem to contribute to ASD susceptibility, but, taken individually, their effects appear to be small. Despite a heterogeneous genetic landscape, the genes implicated thus far-which are involved in chromatin remodeling, metabolism, mRNA translation, and synaptic function-seem to converge in common pathways affecting neuronal and synaptic homeostasis. Animal models developed to study these genes should lead to a better understanding of the diversity of the genetic landscapes of ASD.

          Related collections

          Most cited references 126

          • Record: found
          • Abstract: found
          • Article: not found

          Finding the missing heritability of complex diseases.

          Genome-wide association studies have identified hundreds of genetic variants associated with complex human diseases and traits, and have provided valuable insights into their genetic architecture. Most variants identified so far confer relatively small increments in risk, and explain only a small proportion of familial clustering, leading many to question how the remaining, 'missing' heritability can be explained. Here we examine potential sources of missing heritability and propose research strategies, including and extending beyond current genome-wide association approaches, to illuminate the genetics of complex diseases and enhance its potential to enable effective disease prevention or treatment.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Common SNPs explain a large proportion of the heritability for human height.

            SNPs discovered by genome-wide association studies (GWASs) account for only a small fraction of the genetic variation of complex traits in human populations. Where is the remaining heritability? We estimated the proportion of variance for human height explained by 294,831 SNPs genotyped on 3,925 unrelated individuals using a linear model analysis, and validated the estimation method with simulations based on the observed genotype data. We show that 45% of variance can be explained by considering all SNPs simultaneously. Thus, most of the heritability is not missing but has not previously been detected because the individual effects are too small to pass stringent significance tests. We provide evidence that the remaining heritability is due to incomplete linkage disequilibrium between causal variants and genotyped SNPs, exacerbated by causal variants having lower minor allele frequency than the SNPs explored to date.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations

              It is well established that autism spectrum disorders (ASD) have a strong genetic component. However, for at least 70% of cases, the underlying genetic cause is unknown 1 . Under the hypothesis that de novo mutations underlie a substantial fraction of the risk for developing ASD in families with no previous history of ASD or related phenotypes—so-called sporadic or simplex families 2,3 , we sequenced all coding regions of the genome, i.e. the exome, for parent-child trios exhibiting sporadic ASD, including 189 new trios and 20 previously reported 4 . Additionally, we also sequenced the exomes of 50 unaffected siblings corresponding to these new (n = 31) and previously reported trios (n = 19) 4 , for a total of 677 individual exomes from 209 families. Here we show de novo point mutations are overwhelmingly paternal in origin (4:1 bias) and positively correlated with paternal age, consistent with the modest increased risk for children of older fathers to develop ASD 5 . Moreover, 39% (49/126) of the most severe or disruptive de novo mutations map to a highly interconnected beta-catenin/chromatin remodeling protein network ranked significantly for autism candidate genes. In proband exomes, recurrent protein-altering mutations were observed in two genes, CHD8 and NTNG1. Mutation screening of six candidate genes in 1,703 ASD probands identified additional de novo, protein-altering mutations in GRIN2B, LAMC3, and SCN1A. Combined with copy number variant (CNV) data, these results suggest extreme locus heterogeneity but also provide a target for future discovery, diagnostics, and therapeutics.
                Bookmark

                Author and article information

                Journal
                10.1146/annurev-genom-091212-153431
                23875794

                Comments

                Comment on this article