0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Strategy of Precise Targeting and In Situ Oxygenating for Enhanced Triple-Negative Breast Cancer Chemophototherapy

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The absence of effective therapeutic targets and tumor hypoxia are the main causes of failure in the treatment of triple-negative breast cancer (TNBC). Biomimetic nanotechnology and tumor microenvironment (TME)-responsiveness bring hope and opportunity to address this problem. Here, we develop a core membrane nanoplatform (HM/D-I-BL) using hollow mesoporous manganese dioxide (HM) coated with biomimetic cancer cell membrane for enhanced chemotherapy/phototherapy via the strategy of precise drug delivery and hypoxia amelioration. Cancer cell membrane modification endows HM/D-I-BL with excellent homologous targeting and immune escape performance. The cellular uptake and fluorescence imaging studies confirmed that HM/D-I-BL can be accurately delivered to tumor sites. HM/D-I-BL also features efficient in situ O2 generation in tumor upon laser irradiation, and subsequently enhanced chemotherapy/phototherapy, pointing to its usefulness as a TME-responsive nanozyme to alleviate tumor hypoxia in the presence of H2O2. In addition, HM/D-I-BL showed good fluorescence and magnetic resonance imaging performances, which offers a reliable multimodal image-guided combination tumor therapy for precision theranostics in the future. In general, this intelligent biomimetic nanoplatform with its homotypic tumor targeting, in situ alleviation of tumor hypoxia and synergetic chemophototherapy would open up a new dimension for the precision treatment of TNBC.

          Related collections

          Author and article information

          Journal
          Research Square
          February 15 2022
          Affiliations
          [1 ]The Affiliated People’s Hospital of Ningbo University
          [2 ]Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences
          Article
          10.21203/rs.3.rs-1300836/v1
          b060ee4e-0062-4ee0-9ab4-dfc217eaf44e
          © 2022

          https://creativecommons.org/licenses/by/4.0/

          History

          Comments

          Comment on this article