2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      First report of tilapia lake virus emergence in fish farms in the department of Córdoba, Colombia

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background and Aim:

          In 2016, the tilapia-producing farms in the department of Córdoba, Colombia, had witnessed outbreaks of disease with clinical signs compatible with those caused by the tilapia lake virus (TiLV). This study was conducted to confirm the presence of TiLV in some fish farms in the department of Córdoba.

          Materials and Methods:

          A descriptive cross-sectional study was conducted in seven farms using a non-random sampling method from July 2016 to December 2017. A total of 66 fish, including 33 healthy fish and 33 fish with clinical signs, were caught, from which 178 tissue samples of spleen, liver, and brain were collected. RNA was extracted from each organ using TRIzol ®. cDNA was synthesized using a retrotranscriptase and a universal amplification primer. The polymerase chain reaction was performed using primers specific to TiLV, in which the primers were amplified in a 491 bp region in segment 3 of TiLV, and the amplicons were sequenced using the Sanger method.

          Results:

          Of the seven farms surveyed, 3 (42.85%) had TiLV in the collected fish. Of the 66 collected fish, 18 (27.27%) were infected with TiLV. The virus was detected in the brain (64.3%, 18/28), spleen (61.9%, 13/21), and liver (35.7%, 10/28). The sequences were recorded in GenBank with the codes MH338228, MH350845, and MH350846. Nucleotide homology analyses revealed that this study’s circulating strains exhibited 97% identity with the Israeli strain (GenBank KU751816.1).

          Conclusion:

          This is the first official report of TiLV in the department of Córdoba, Colombia. The circulating strains detected in this study exhibited 97% identity with the Israeli strain.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences.

          Some simple formulae were obtained which enable us to estimate evolutionary distances in terms of the number of nucleotide substitutions (and, also, the evolutionary rates when the divergence times are known). In comparing a pair of nucleotide sequences, we distinguish two types of differences; if homologous sites are occupied by different nucleotide bases but both are purines or both pyrimidines, the difference is called type I (or "transition" type), while, if one of the two is a purine and the other is a pyrimidine, the difference is called type II (or "transversion" type). Letting P and Q be respectively the fractions of nucleotide sites showing type I and type II differences between two sequences compared, then the evolutionary distance per site is K = -(1/2) ln [(1-2P-Q) square root of 1-2Q]. The evolutionary rate per year is then given by k = K/(2T), where T is the time since the divergence of the two sequences. If only the third codon positions are compared, the synonymous component of the evolutionary base substitutions per site is estimated by K'S = -(1/2) ln (1-2P-Q). Also, formulae for standard errors were obtained. Some examples were worked out using reported globin sequences to show that synonymous substitutions occur at much higher rates than amino acid-altering substitutions in evolution.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Identification of a novel RNA virus lethal to tilapia.

            Tilapines are important for the sustainability of ecological systems and serve as the second most important group of farmed fish worldwide. Significant mortality of wild and cultured tilapia has been observed recently in Israel. The etiological agent of this disease, a novel RNA virus, is described here, and procedures allowing its isolation and detection are revealed. The virus, denominated tilapia lake virus (TiLV), was propagated in primary tilapia brain cells or in an E-11 cell line, and it induced a cytopathic effect at 5 to 10 days postinfection. Electron microscopy revealed enveloped icosahedral particles of 55 to 75 nm. Low-passage TiLV, injected intraperitoneally in tilapia, induced a disease resembling the natural disease, which typically presents with lethargy, ocular alterations, and skin erosions, with >80% mortality. Histological changes included congestion of the internal organs (kidneys and brain) with foci of gliosis and perivascular cuffing of lymphocytes in the brain cortex; ocular inflammation included endophthalmitis and cataractous changes of the lens. The cohabitation of healthy and diseased fish demonstrated that the disease is contagious and that mortalities (80 to 100%) occur within a few days. Fish surviving the initial mortality were immune to further TiLV infections, suggesting the mounting of a protective immune response. Screening cDNA libraries identified a TiLV-specific sequence, allowing the design of a PCR-based diagnostic test. This test enables the specific identification of TiLV in tilapines and should help control the spread of this virus worldwide.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Characterization of a Novel Orthomyxo-like Virus Causing Mass Die-Offs of Tilapia

              ABSTRACT Tilapia are an important global food source due to their omnivorous diet, tolerance for high-density aquaculture, and relative disease resistance. Since 2009, tilapia aquaculture has been threatened by mass die-offs in farmed fish in Israel and Ecuador. Here we report evidence implicating a novel orthomyxo-like virus in these outbreaks. The tilapia lake virus (TiLV) has a 10-segment, negative-sense RNA genome. The largest segment, segment 1, contains an open reading frame with weak sequence homology to the influenza C virus PB1 subunit. The other nine segments showed no homology to other viruses but have conserved, complementary sequences at their 5′ and 3′ termini, consistent with the genome organization found in other orthomyxoviruses. In situ hybridization indicates TiLV replication and transcription at sites of pathology in the liver and central nervous system of tilapia with disease.
                Bookmark

                Author and article information

                Journal
                Vet World
                Vet World
                Veterinary World
                Veterinary World (India )
                0972-8988
                2231-0916
                April 2021
                10 April 2021
                : 14
                : 4
                : 865-872
                Affiliations
                [1 ]Institute of Biological Research of the Tropic, University of Córdoba, Colombia
                [2 ]Aquatic Health and Water Quality laboratory, Aquaculture Program, University of Córdoba, Colombia
                [3 ]Department of Pharmacy, Faculty of Health Sciences, University of Córdoba, Colombia
                Author notes
                Article
                Vetworld-14-865
                10.14202/vetworld.2021.865-872
                8167540
                b068f240-6419-4106-a13e-38b2c18f6210
                Copyright: © Contreras, et al.

                Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 26 April 2020
                : 21 December 2020
                Categories
                Research Article

                alternative,animal use,developing countries,disease outbreaks,economic factor,fish diseases,sentinel surveillance

                Comments

                Comment on this article