4
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Study of Intraventricular Cerliponase Alfa for CLN2 Disease

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references 12

          • Record: found
          • Abstract: found
          • Article: not found

          Association of mutations in a lysosomal protein with classical late-infantile neuronal ceroid lipofuscinosis.

          Classical late-infantile neuronal ceroid lipofuscinosis (LINCL) is a fatal neurodegenerative disease whose defective gene has remained elusive. A molecular basis for LINCL was determined with an approach applicable to other lysosomal storage diseases. When the mannose 6-phosphate modification of newly synthesized lysosomal enzymes was used as an affinity marker, a single protein was identified that is absent in LINCL. Sequence comparisons suggest that this protein is a pepstatin-insensitive lysosomal peptidase, and a corresponding enzymatic activity was deficient in LINCL autopsy specimens. Mutations in the gene encoding this protein were identified in LINCL patients but not in normal controls.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Enzyme replacement therapy attenuates disease progression in a canine model of late-infantile neuronal ceroid lipofuscinosis (CLN2 disease)

            Using a canine model of classical late-infantile neuronal ceroid lipofuscinosis (CLN2 disease), a study was conducted to evaluate the potential pharmacological activity of recombinant human tripeptidyl peptidase-1 (rhTPP1) enzyme replacement therapy administered directly to the cerebrospinal fluid (CSF). CLN2 disease is a hereditary neurodegenerative disorder resulting from mutations in CLN2, which encodes the soluble lysosomal enzyme tripeptidyl peptidase-1 (TPP1). Infants with mutations in both CLN2 alleles develop normally but in the late-infantile/early-childhood period undergo progressive neurological decline accompanied by pronounced brain atrophy. The disorder, a form of Batten disease, is uniformly fatal, with clinical signs starting between 2 and 4 years of age and death usually occurring by the early teenage years. Dachshunds homozygous for a null mutation in the canine ortholog of CLN2 (TPP1) exhibit a similar disorder that progresses to end stage at 10.5–11 months of age. Administration of rhTPP1 via infusion into the CSF every other week, starting at approximately 2.5 months of age, resulted in dose-dependent significant delays in disease progression, as measured by delayed onset of neurologic deficits, improved performance on a cognitive function test, reduced brain atrophy, and increased life span. Based on these findings, a clinical study evaluating the potential therapeutic value of rhTPP1 administration into the CSF of children with CLN2 disease has been initiated.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mutational analysis of the defective protease in classic late-infantile neuronal ceroid lipofuscinosis, a neurodegenerative lysosomal storage disorder.

              The late-infantile form of neuronal ceroid lipofuscinosis (LINCL) is a progressive and ultimately fatal neurodegenerative disease of childhood. The defective gene in this hereditary disorder, CLN2, encodes a recently identified lysosomal pepstatin-insensitive acid protease. To better understand the molecular pathology of LINCL, we conducted a genetic survey of CLN2 in 74 LINCL families. In 14 patients, CLN2 protease activities were normal and no mutations were identified, suggesting other forms of NCL. Both pathogenic alleles were identified in 57 of the other 60 LINCL families studied. In total, 24 mutations were associated with LINCL, comprising six splice-junction mutations, 11 missense mutations, 3 nonsense mutations, 3 small deletions, and 1 single-nucleotide insertion. Two mutations were particularly common: an intronic G-->C transversion in the invariant AG of a 3' splice junction, found in 38 of 115 alleles, and a C-->T transition in 32 of 115 alleles, which prematurely terminates translation at amino acid 208 of 563. An Arg-->His substitution was identified, which was associated with a late age at onset and protracted clinical phenotype, in a number of other patients originally diagnosed with juvenile NCL.
                Bookmark

                Author and article information

                Journal
                New England Journal of Medicine
                N Engl J Med
                Massachusetts Medical Society
                0028-4793
                1533-4406
                May 17 2018
                May 17 2018
                : 378
                : 20
                : 1898-1907
                Affiliations
                [1 ]From the Department of Pediatrics, University Medical Center Hamburg–Eppendorf, Hamburg, Germany (A.S., A.K.); BioMarin Pharmaceutical, Novato, CA (T.A., H.C., P.S., D.J.); the Department of Neuroscience, Bambino Gesù Children’s Hospital, IRCCS, Rome (N.S.); Nationwide Children’s Hospital and Ohio State University, Columbus (E.L.R.); UCL Great Ormond Street Institute of Child Health, London (P.G.); and the Citigroup Biomedical Imaging Center, Departments of Radiology and Genetic Medicine, Weill Cornell...
                Article
                10.1056/NEJMoa1712649
                © 2018
                Product

                Comments

                Comment on this article