+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A novel bocavirus in canine liver


      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.



          Bocaviruses are classified as a genus within the Parvoviridae family of single-stranded DNA viruses and are pathogenic in some mammalian species. Two species have been previously reported in dogs, minute virus of canines (MVC), associated with neonatal diseases and fertility disorders; and Canine bocavirus (CBoV), associated with respiratory disease.


          In this study using deep sequencing of enriched viral particles from the liver of a dog with severe hemorrhagic gastroenteritis, necrotizing vasculitis, granulomatous lymphadenitis and anuric renal failure, we identified and characterized a novel bocavirus we named Canine bocavirus 3 (CnBoV3). The three major ORFs of CnBoV3 (NS1, NP1 and VP1) shared less than 60% aa identity with those of other bocaviruses qualifying it as a novel species based on ICTV criteria. Inverse PCR showed the presence of concatemerized or circular forms of the genome in liver.


          We genetically characterized a bocavirus in a dog liver that is highly distinct from prior canine bocaviruses found in respiratory and fecal samples. Its role in this animal’s complex disease remains to be determined.

          Related collections

          Most cited references19

          • Record: found
          • Abstract: found
          • Article: not found

          Virome analysis for identification of novel mammalian viruses in bat species from Chinese provinces.

          Bats are natural hosts for a large variety of zoonotic viruses. This study aimed to describe the range of bat viromes, including viruses from mammals, insects, fungi, plants, and phages, in 11 insectivorous bat species (216 bats in total) common in six provinces of China. To analyze viromes, we used sequence-independent PCR amplification and next-generation sequencing technology (Solexa Genome Analyzer II; Illumina). The viromes were identified by sequence similarity comparisons to known viruses. The mammalian viruses included those of the Adenoviridae, Herpesviridae, Papillomaviridae, Retroviridae, Circoviridae, Rhabdoviridae, Astroviridae, Flaviridae, Coronaviridae, Picornaviridae, and Parvovirinae; insect viruses included those of the Baculoviridae, Iflaviridae, Dicistroviridae, Tetraviridae, and Densovirinae; fungal viruses included those of the Chrysoviridae, Hypoviridae, Partitiviridae, and Totiviridae; and phages included those of the Caudovirales, Inoviridae, and Microviridae and unclassified phages. In addition to the viruses and phages associated with the insects, plants, and bacterial flora related to the diet and habitation of bats, we identified the complete or partial genome sequences of 13 novel mammalian viruses. These included herpesviruses, papillomaviruses, a circovirus, a bocavirus, picornaviruses, a pestivirus, and a foamy virus. Pairwise alignments and phylogenetic analyses indicated that these novel viruses showed little genetic similarity with previously reported viruses. This study also revealed a high prevalence and diversity of bat astroviruses and coronaviruses in some provinces. These findings have expanded our understanding of the viromes of bats in China and hinted at the presence of a large variety of unknown mammalian viruses in many common bat species of mainland China.
            • Record: found
            • Abstract: found
            • Article: not found

            Metagenomic analyses of viruses in stool samples from children with acute flaccid paralysis.

            We analyzed viral nucleic acids in stool samples collected from 35 South Asian children with nonpolio acute flaccid paralysis (AFP). Sequence-independent reverse transcription and PCR amplification of capsid-protected, nuclease-resistant viral nucleic acids were followed by DNA sequencing and sequence similarity searches. Limited Sanger sequencing (35 to 240 subclones per sample) identified an average of 1.4 distinct eukaryotic viruses per sample, while pyrosequencing yielded 2.6 viruses per sample. In addition to bacteriophage and plant viruses, we detected known enteric viruses, including rotavirus, adenovirus, picobirnavirus, and human enterovirus species A (HEV-A) to HEV-C, as well as numerous other members of the Picornaviridae family, including parechovirus, Aichi virus, rhinovirus, and human cardiovirus. The viruses with the most divergent sequences relative to those of previously reported viruses included members of a novel Picornaviridae genus and four new viral species (members of the Dicistroviridae, Nodaviridae, and Circoviridae families and the Bocavirus genus). Samples from six healthy contacts of AFP patients were similarly analyzed and also contained numerous viruses, particularly HEV-C, including a potentially novel Enterovirus genotype. Determining the prevalences and pathogenicities of the novel genotypes, species, genera, and potential new viral families identified in this study in different demographic groups will require further studies with different demographic and patient groups, now facilitated by knowledge of these viral genomes.
              • Record: found
              • Abstract: found
              • Article: not found

              Human bocavirus-the first 5 years.

              Four species of human bocavirus (HBoV) have been recently discovered and classified in the Bocavirus genus (family Parvoviridae, subfamily Parvovirinae). Although detected both in respiratory and stool samples worldwide, HBoV1 is predominantly a respiratory pathogen, whereas HBoV2, HBoV3, and HBoV4 have been found mainly in stool. A variety of signs and symptoms have been described in patients with HBoV infection including rhinitis, pharyngitis, cough, dyspnea, wheezing, pneumonia, acute otitis media, fever, nausea, vomiting, and diarrhea. Many of these potential manifestations have not been systematically explored, and they have been questioned because of high HBoV co-infection rates in symptomatic subjects and high HBoV detection rates in asymptomatic subjects. However, evidence is mounting to show that HBoV1 is an important cause of lower respiratory tract illness. The best currently available diagnostic approaches are quantitative PCR and serology. This concise review summarizes the current clinical knowledge on HBoV species. Copyright © 2011 John Wiley & Sons, Ltd.

                Author and article information

                Virol J
                Virol. J
                Virology Journal
                BioMed Central
                13 February 2013
                : 10
                : 54
                [1 ]Blood Systems Research Institute, San Francisco, CA, USA
                [2 ]Department of Laboratory Medicine, University of California, San Francisco, CA, USA
                [3 ]Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, CA, USA
                [4 ]IDEXX Reference Laboratories, CA, USA
                [5 ]UCSF-Abbott Viral Diagnostics and Discovery Center, CA, USA
                [6 ]Department of Microbiology, University of Kansas, KS, USA
                [7 ]Stanford Genome Technology Center, Stanford, CA, USA
                Copyright ©2013 Li et al.; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                : 19 December 2012
                : 31 January 2013
                Short Report

                Microbiology & Virology
                canine bocavirus 3,episome,coinfection
                Microbiology & Virology
                canine bocavirus 3, episome, coinfection


                Comment on this article