32
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Biochemical, Cellular, Physiological, and Pathological Consequences of Human Loss of N -Glycolylneuraminic Acid

      ,
      ChemBioChem
      Wiley-Blackwell

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          About 2-3 million years ago, Alu-mediated deletion of a critical exon in the CMAH gene became fixed in the hominin lineage ancestral to humans, possibly through a stepwise process of selection by pathogen targeting of the CMAH product (the sialic acid Neu5Gc), followed by reproductive isolation through female anti-Neu5Gc antibodies. Loss of CMAH has occurred independently in some other lineages, but is functionally intact in Old World primates, including our closest relatives, the chimpanzee. Although the biophysical and biochemical ramifications of losing tens of millions of Neu5Gc hydroxy groups at most cell surfaces remains poorly understood, we do know that there are multiscale effects functionally relevant to both sides of the host-pathogen interface. Hominin CMAH loss might also contribute to understanding human evolution, at the time when our ancestors were starting to use stone tools, increasing their consumption of meat, and possibly hunting. Comparisons with chimpanzees within ethical and practical limitations have revealed some consequences of human CMAH loss, but more has been learned by using a mouse model with a human-like Cmah inactivation. For example, such mice can develop antibodies against Neu5Gc that could affect inflammatory processes like cancer progression in the face of Neu5Gc metabolic incorporation from red meats, display a hyper-reactive immune system, a human-like tendency for delayed wound healing, late-onset hearing loss, insulin resistance, susceptibility to muscular dystrophy pathologies, and increased sensitivity to multiple human-adapted pathogens involving sialic acids. Further studies in such mice could provide a model for other human-specific processes and pathologies involving sialic acid biology that have yet to be explored.

          Related collections

          Most cited references285

          • Record: found
          • Abstract: found
          • Article: not found

          Endurance running and the evolution of Homo.

          Striding bipedalism is a key derived behaviour of hominids that possibly originated soon after the divergence of the chimpanzee and human lineages. Although bipedal gaits include walking and running, running is generally considered to have played no major role in human evolution because humans, like apes, are poor sprinters compared to most quadrupeds. Here we assess how well humans perform at sustained long-distance running, and review the physiological and anatomical bases of endurance running capabilities in humans and other mammals. Judged by several criteria, humans perform remarkably well at endurance running, thanks to a diverse array of features, many of which leave traces in the skeleton. The fossil evidence of these features suggests that endurance running is a derived capability of the genus Homo, originating about 2 million years ago, and may have been instrumental in the evolution of the human body form.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cell surface engineering by a modified Staudinger reaction.

            Selective chemical reactions enacted within a cellular environment can be powerful tools for elucidating biological processes or engineering novel interactions. A chemical transformation that permits the selective formation of covalent adducts among richly functionalized biopolymers within a cellular context is presented. A ligation modeled after the Staudinger reaction forms an amide bond by coupling of an azide and a specifically engineered triarylphosphine. Both reactive partners are abiotic and chemically orthogonal to native cellular components. Azides installed within cell surface glycoconjugates by metabolism of a synthetic azidosugar were reacted with a biotinylated triarylphosphine to produce stable cell-surface adducts. The tremendous selectivity of the transformation should permit its execution within a cell's interior, offering new possibilities for probing intracellular interactions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Editorial

                Bookmark

                Author and article information

                Journal
                ChemBioChem
                ChemBioChem
                Wiley-Blackwell
                14394227
                July 04 2017
                July 04 2017
                : 18
                : 13
                : 1155-1171
                Article
                10.1002/cbic.201700077
                28423240
                b07618b4-0c95-438f-95db-95c4a97e4cd3
                © 2017

                http://doi.wiley.com/10.1002/tdm_license_1

                History

                Comments

                Comment on this article