20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Neuroantigen-Specific Autoregulatory CD8+ T Cells Inhibit Autoimmune Demyelination through Modulation of Dendritic Cell Function

      research-article
      , , *
      PLoS ONE
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Experimental autoimmune encephalomyelitis (EAE) is a well-established murine model of multiple sclerosis, an immune-mediated demyelinating disorder of the central nervous system (CNS). We have previously shown that CNS-specific CD8+ T cells (CNS-CD8+) ameliorate EAE, at least in part through modulation of CNS-specific CD4+ T cell responses. In this study, we show that CNS-CD8+ also modulate the function of CD11c+ dendritic cells (DC), but not other APCs such as CD11b+ monocytes or B220+ B cells. DC from mice receiving either myelin oligodendrocyte glycoprotein-specific CD8+ (MOG-CD8+) or proteolipid protein-specific CD8+ (PLP-CD8+) T cells were rendered inefficient in priming T cell responses from naïve CD4+ T cells (OT-II) or supporting recall responses from CNS-specific CD4+ T cells. CNS-CD8+ did not alter DC subset distribution or MHC class II and CD86 expression, suggesting that DC maturation was not affected. However, the cytokine profile of DC from CNS-CD8+ recipients showed lower IL-12 and higher IL-10 production. These functions were not modulated in the absence of immunization with CD8-cognate antigen, suggesting an antigen-specific mechanism likely requiring CNS-CD8-DC interaction. Interestingly, blockade of IL-10 in vitro rescued CD4+ proliferation and in vivo expression of IL-10 was necessary for the suppression of EAE by MOG-CD8+. These studies demonstrate a complex interplay between CNS-specific CD8+ T cells, DC and pathogenic CD4+ T cells, with important implications for therapeutic interventions in this disease.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: not found

          Infiltrating monocytes trigger EAE progression, but do not contribute to the resident microglia pool.

          In multiple sclerosis and the experimental autoimmune encephalitis (EAE) mouse model, two pools of morphologically indistinguishable phagocytic cells, microglia and inflammatory macrophages, accrue from proliferating resident precursors and recruitment of blood-borne progenitors, respectively. Whether these cell types are functionally equivalent is hotly debated, but is challenging to address experimentally. Using a combination of parabiosis and myeloablation to replace circulating progenitors without affecting CNS-resident microglia, we found a strong correlation between monocyte infiltration and progression to the paralytic stage of EAE. Inhibition of chemokine receptor-dependent recruitment of monocytes to the CNS blocked EAE progression, suggesting that these infiltrating cells are essential for pathogenesis. Finally, we found that, although microglia can enter the cell cycle and return to quiescence following remission, recruited monocytes vanish, and therefore do not ultimately contribute to the resident microglial pool. In conclusion, we identified two distinct subsets of myelomonocytic cells with distinct roles in neuroinflammation and disease progression.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Clonal Expansions of Cd8+ T Cells Dominate the T Cell Infiltrate in Active Multiple Sclerosis Lesions as Shown by Micromanipulation and Single Cell Polymerase Chain Reaction

            Clonal composition and T cell receptor (TCR) repertoire of CD4+ and CD8+ T cells infiltrating actively demyelinating multiple sclerosis (MS) lesions were determined with unprecedented resolution at the level of single cells. Individual CD4+ or CD8+ T cells were isolated from frozen sections of lesional tissue by micromanipulation and subjected to single target amplification of TCR-β gene rearrangements. This strategy allows the assignment of a TCR variable region (V region) sequence to the particular T cell from which it was amplified. Sequence analysis revealed that in both cases investigated, the majority of CD8+ T cells belonged to few clones. One of these clones accounted for 35% of CD8+ T cells in case 1. V region sequence comparison revealed signs of selection for common peptide specificities for some of the CD8+ T cells in case 1. In both cases, the CD4+ T cell population was more heterogeneous. Most CD4+ and CD8+ clones were represented in perivascular infiltrates as well as among parenchymal T cells. In case 2, two of the CD8+ clones identified in brain tissue were also detected in peripheral blood. Investigation of the antigenic specificities of expanded clones may help to elucidate their functional properties.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              CCR2+Ly-6Chi monocytes are crucial for the effector phase of autoimmunity in the central nervous system.

              The chemokine receptor CCR2 plays a vital role for the induction of autoimmunity in the central nervous system. However, it remains unclear how the pathogenic response is mediated by CCR2-bearing cells. By combining bone marrow chimerism with gene targeting we detected a mild disease-modulating role of CCR2 during experimental autoimmune encephalomyelitis, a model for central nervous system autoimmunity, on radio-resistant cells that was independent from targeted CCR2 expression on endothelia. Interestingly, absence of CCR2 on lymphocytes did not influence autoimmune demyelination. In contrast, engagement of CCR2 on accessory cells was required for experimental autoimmune encephalomyelitis induction. CCR2+Ly-6Chi monocytes were rapidly recruited to the inflamed central nervous system and were crucial for the effector phase of disease. Selective depletion of this specific monocyte subpopulation through engagement of CCR2 strongly reduced central nervous system autoimmunity. Collectively, these data indicate a disease-promoting role of CCR2+Ly-6Chi monocytes during autoimmune inflammation of the central nervous system.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2014
                21 August 2014
                : 9
                : 8
                : e105763
                Affiliations
                [1]Department of Pathology, The University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
                Klinikum rechts der Isar der Technischen Universitaet Muenchen, Germany
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: VPK SBO NJK. Performed the experiments: VPK SBO. Analyzed the data: VPK SBO. Contributed reagents/materials/analysis tools: NJK. Contributed to the writing of the manuscript: VPK SBO NJK.

                [¤]

                Current address: Department of Pathology, University of Iowa Health Care, Iowa City, Iowa, United States of America

                Article
                PONE-D-14-20717
                10.1371/journal.pone.0105763
                4140828
                25144738
                b0776a59-e776-4280-8cc0-d28866d7def8
                Copyright @ 2014

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 8 May 2014
                : 24 July 2014
                Page count
                Pages: 10
                Funding
                This work was supported by National Institutes of Health (NIH) K24 AI079272 and NIH R01 AI092106. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Immunology
                Clinical Immunology
                Neuroimmunology
                Autoimmunity
                Immune Suppression
                Medicine and Health Sciences
                Inflammatory Diseases
                Neurology
                Custom metadata
                The authors confirm that all data underlying the findings are fully available without restriction. All relevant data are within the paper and its Supporting Information files.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article