3
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Slow response of the gas hydrate system to ridge erosion and sea-level rise: Insights from double BSRs on the southern Hikurangi margin (New Zealand)

      , ,
      Earth and Planetary Science Letters
      Elsevier BV

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references66

          • Record: found
          • Abstract: found
          • Article: not found

          Sea level and global ice volumes from the Last Glacial Maximum to the Holocene.

          The major cause of sea-level change during ice ages is the exchange of water between ice and ocean and the planet's dynamic response to the changing surface load. Inversion of ∼1,000 observations for the past 35,000 y from localities far from former ice margins has provided new constraints on the fluctuation of ice volume in this interval. Key results are: (i) a rapid final fall in global sea level of ∼40 m in <2,000 y at the onset of the glacial maximum ∼30,000 y before present (30 ka BP); (ii) a slow fall to -134 m from 29 to 21 ka BP with a maximum grounded ice volume of ∼52 × 10(6) km(3) greater than today; (iii) after an initial short duration rapid rise and a short interval of near-constant sea level, the main phase of deglaciation occurred from ∼16.5 ka BP to ∼8.2 ka BP at an average rate of rise of 12 m⋅ka(-1) punctuated by periods of greater, particularly at 14.5-14.0 ka BP at ≥40 mm⋅y(-1) (MWP-1A), and lesser, from 12.5 to 11.5 ka BP (Younger Dryas), rates; (iv) no evidence for a global MWP-1B event at ∼11.3 ka BP; and (v) a progressive decrease in the rate of rise from 8.2 ka to ∼2.5 ka BP, after which ocean volumes remained nearly constant until the renewed sea-level rise at 100-150 y ago, with no evidence of oscillations exceeding ∼15-20 cm in time intervals ≥200 y from 6 to 0.15 ka BP.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            A simple rate model for organic matter decomposition in marine sediments

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found
              Is Open Access

              A Late Pleistocene sea level stack

              Late Pleistocene sea level has been reconstructed from ocean sediment core data using a wide variety of proxies and models. However, the accuracy of individual reconstructions is limited by measurement error, local variations in salinity and temperature, and assumptions particular to each technique. Here we present a sea level stack (average) which increases the signal-to-noise ratio of individual reconstructions. Specifically, we perform principal component analysis (PCA) on seven records from 0 to 430 ka and five records from 0 to 798 ka. The first principal component, which we use as the stack, describes ∼  80 % of the variance in the data and is similar using either five or seven records. After scaling the stack based on Holocene and Last Glacial Maximum (LGM) sea level estimates, the stack agrees to within 5 m with isostatically adjusted coral sea level estimates for Marine Isotope Stages 5e and 11 (125 and 400 ka, respectively). Bootstrapping and random sampling yield mean uncertainty estimates of 9–12 m (1 σ ) for the scaled stack. Sea level change accounts for about 45 % of the total orbital-band variance in benthic δ 18 O, compared to a 65 % contribution during the LGM-to-Holocene transition. Additionally, the second and third principal components of our analyses reflect differences between proxy records associated with spatial variations in the δ 18 O of seawater.
                Bookmark

                Author and article information

                Contributors
                Journal
                Earth and Planetary Science Letters
                Earth and Planetary Science Letters
                Elsevier BV
                0012821X
                December 2023
                December 2023
                : 624
                : 118433
                Article
                10.1016/j.epsl.2023.118433
                b0882606-58db-4803-b872-f14fc45ea32b
                © 2023

                https://www.elsevier.com/tdm/userlicense/1.0/

                http://creativecommons.org/licenses/by-nc/4.0/

                History

                Comments

                Comment on this article