Blog
About

0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Functional Landscape of Dysregulated MicroRNAs in Oral Squamous Cell Carcinoma: Clinical Implications

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          MicroRNA (miRNA) dysregulation is associated with the pathogenesis of oral squamous cell carcinoma (OSCC), and its elucidation could potentially provide information on patient outcome. A growing body of translational research on miRNA biology is focusing on precision oncology, aiming to decode the miRNA regulatory network in the development and progression of cancer. Tissue-specific expression and stable presence in all body fluids are unique features of miRNAs, which could be potentially exploited in the clinical setting. Recent understanding of miRNA properties has led them to be useful, attractive, and potential tools either as biomarkers (distinct miRNA expression signature) for diagnosis and prognostic outcomes or as targets for novel therapeutic entities, enabling personalized treatment for OSCC. In this review, we discuss recent research on different aspects of alterations in miRNA profiles along with their clinical significance and strive to identify probable potential miRNA biomarkers for diagnosis and prognosis of OSCC. We also discuss the current understanding and scope of development of miRNA-based therapeutics against OSCC.

          Related collections

          Most cited references 79

          • Record: found
          • Abstract: found
          • Article: not found

          Roles for microRNAs in conferring robustness to biological processes.

          Biological systems use a variety of mechanisms to maintain their functions in the face of environmental and genetic perturbations. Increasing evidence suggests that, among their roles as posttranscriptional repressors of gene expression, microRNAs (miRNAs) help to confer robustness to biological processes by reinforcing transcriptional programs and attenuating aberrant transcripts, and they may in some network contexts help suppress random fluctuations in transcript copy number. These activities have important consequences for normal development and physiology, disease, and evolution. Here, we will discuss examples and principles of miRNAs that contribute to robustness in animal systems. Copyright © 2012 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            miRNA-mediated gene silencing by translational repression followed by mRNA deadenylation and decay.

            microRNAs (miRNAs) regulate gene expression through translational repression and/or messenger RNA (mRNA) deadenylation and decay. Because translation, deadenylation, and decay are closely linked processes, it is important to establish their ordering and thus to define the molecular mechanism of silencing. We have investigated the kinetics of these events in miRNA-mediated gene silencing by using a Drosophila S2 cell-based controllable expression system and show that mRNAs with both natural and engineered 3' untranslated regions with miRNA target sites are first subject to translational inhibition, followed by effects on deadenylation and decay. We next used a natural translational elongation stall to show that miRNA-mediated silencing inhibits translation at an early step, potentially translation initiation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Comprehensive MicroRNA profiling for head and neck squamous cell carcinomas.

              The objective of this study is to investigate the significance of microRNAs (miRNA) in patients with locally advanced head and neck squamous cell carcinoma (HNSCC). A global miRNA profiling was done on 51 formalin-fixed archival HNSCC samples using quantitative reverse transcription-PCR approach, correlated with patients' clinical parameters. Functional characterization of HNSCC-associated miRNAs was conducted on three HNSCC cell lines. Cell viability and proliferation were investigated using MTS and clonogenic assays, respectively; cell cycle analyses were assessed using flow cytometry. Thirty-eight of the 117 (33%) consistently detected miRNAs were significantly differentially expressed between malignant versus normal tissues. Concordant with previous reports, overexpression of miR-21, miR-155, let-7i, and miR-142-3p and underexpression of miR-125b and miR-375 were detected. Upregulation of miR-423, miR-106b, miR-20a, and miR-16 as well as downregulation of miR-10a were newly observed. Exogenous overexpression of miR-375 in HNSCC cell lines reduced proliferation and clonogenicity and increased cells in sub-G(1). Similar cellular effects were observed in knockdown studies of the miR-106b-25 cluster but with accumulation of cells in G(1) arrest. No major difference was detected in miRNA profiles among laryngeal, oropharyngeal, or hypopharyngeal cancers. miR-451 was found to be the only significantly overexpressed miRNA by 4.7-fold between nonrelapsed and relapsed patients. We have identified a group of aberrantly expressed miRNAs in HNSCC and showed that underexpression of miR-375 and overexpression of miR-106b-25 cluster might play oncogenic roles in this disease. Further detailed examinations of miRNAs will provide opportunities to dissect the complex molecular abnormalities driving HNSCC progression.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Oncol
                Front Oncol
                Front. Oncol.
                Frontiers in Oncology
                Frontiers Media S.A.
                2234-943X
                12 May 2020
                2020
                : 10
                Affiliations
                1Tata Translational Cancer Research Center, Tata Medical Center , Kolkata, India
                2Department of Head and Neck Surgical Oncology, Tata Medical Center , Kolkata, India
                3Saroj Gupta Cancer Centre and Research Institute , Kolkata, India
                Author notes

                Edited by: Jorge A. R. Salvador, University of Coimbra, Portugal

                Reviewed by: Cesare Piazza, Istituto Nazionale dei Tumori (IRCCS), Italy; Agnieszka Sobecka, Poznan University of Medical Sciences, Poland

                This article was submitted to Head and Neck Cancer, a section of the journal Frontiers in Oncology

                Article
                10.3389/fonc.2020.00619
                7274490
                Copyright © 2020 Ghosh, Pattatheyil and Roychoudhury.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                Page count
                Figures: 0, Tables: 0, Equations: 0, References: 123, Pages: 11, Words: 9466
                Funding
                Funded by: Department of Health Research 10.13039/501100009104
                Funded by: Lady Tata Memorial Trust 10.13039/100012117
                Categories
                Oncology
                Review

                Comments

                Comment on this article