33
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      CCR7 provides localized access to IL-2 and defines homeostatically distinct regulatory T cell subsets

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          CD44 loCD62L hi regulatory T cells preferentially access IL-2 in T cell zones due to expression of CCR7

          Abstract

          Immune tolerance and activation depend on precise control over the number and function of immunosuppressive Foxp3 + regulatory T (T reg) cells, and the importance of IL-2 in maintaining tolerance and preventing autoimmunity is clear. However, the homeostatic requirement for IL-2 among specific populations of peripheral T reg cells remains poorly understood. We show that IL-2 selectively maintains a population of quiescent CD44 loCD62L hi T reg cells that gain access to paracrine IL-2 produced in the T cell zones of secondary lymphoid tissues due to their expression of the chemokine receptor CCR7. In contrast, CD44 hiCD62L loCCR7 lo T reg cells that populate nonlymphoid tissues do not access IL-2–prevalent regions in vivo and are insensitive to IL-2 blockade; instead, their maintenance depends on continued signaling through the co-stimulatory receptor ICOS (inducible co-stimulator). Thus, we define a fundamental homeostatic subdivision in T reg cell populations based on their localization and provide an integrated framework for understanding how T reg cell abundance and function are controlled by unique signals in different tissue environments.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: not found

          Regulatory T cell lineage specification by the forkhead transcription factor foxp3.

          Regulatory T cell-mediated dominant tolerance has been demonstrated to play an important role in the prevention of autoimmunity. Here, we present data arguing that the forkhead transcription factor Foxp3 acts as the regulatory T cell lineage specification factor and mediator of the genetic mechanism of dominant tolerance. We show that expression of Foxp3 is highly restricted to the subset alphabeta of T cells and, irrespective of CD25 expression, correlates with suppressor activity. Induction of Foxp3 expression in nonregulatory T cells does not occur during pathogen-driven immune responses, and Foxp3 deficiency does not impact the functional responses of nonregulatory T cells. Furthermore, T cell-specific ablation of Foxp3 is sufficient to induce the identical early onset lymphoproliferative syndrome observed in Foxp3-deficient mice. Analysis of Foxp3 expression during thymic development suggests that this mechanism is not hard-wired but is dependent on TCR/MHC ligand interactions.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            CCR7 and its ligands: balancing immunity and tolerance.

            A key feature of the immune system is its ability to induce protective immunity against pathogens while maintaining tolerance towards self and innocuous environmental antigens. Recent evidence suggests that by guiding cells to and within lymphoid organs, CC-chemokine receptor 7 (CCR7) essentially contributes to both immunity and tolerance. This receptor is involved in organizing thymic architecture and function, lymph-node homing of naive and regulatory T cells via high endothelial venules, as well as steady state and inflammation-induced lymph-node-bound migration of dendritic cells via afferent lymphatics. Here, we focus on the cellular and molecular mechanisms that enable CCR7 and its two ligands, CCL19 and CCL21, to balance immunity and tolerance.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A function for interleukin 2 in Foxp3-expressing regulatory T cells.

              Regulatory T cells (T(reg) cells) expressing the forkhead family transcription factor Foxp3 are critical mediators of dominant immune tolerance to self. Most T(reg) cells constitutively express the high-affinity interleukin 2 (IL-2) receptor alpha-chain (CD25); however, the precise function of IL-2 in T(reg) cell biology has remained controversial. To directly assess the effect of IL-2 signaling on T(reg) cell development and function, we analyzed mice containing the Foxp3(gfp) knock-in allele that were genetically deficient in either IL-2 (Il2(-/-)) or CD25 (Il2ra(-/-)). We found that IL-2 signaling was dispensable for the induction of Foxp3 expression in thymocytes from these mice, which indicated that IL-2 signaling does not have a nonredundant function in the development of T(reg) cells. Unexpectedly, Il2(-/-) and Il2ra(-/-) T(reg) cells were fully able to suppress T cell proliferation in vitro. In contrast, Foxp3 was not expressed in thymocytes or peripheral T cells from Il2rg(-/-) mice. Gene expression analysis showed that IL-2 signaling was required for maintenance of the expression of genes involved in the regulation of cell growth and metabolism. Thus, IL-2 signaling seems to be critically required for maintaining the homeostasis and competitive fitness of T(reg) cells in vivo.
                Bookmark

                Author and article information

                Journal
                J Exp Med
                J. Exp. Med
                jem
                The Journal of Experimental Medicine
                The Rockefeller University Press
                0022-1007
                1540-9538
                13 January 2014
                : 211
                : 1
                : 121-136
                Affiliations
                [1 ]Benaroya Research Institute, Seattle, WA 98101
                [2 ]Department of Immunology , [3 ]STAR Program, University of Washington School of Medicine, Seattle, WA 98195
                [4 ]Department of Cellular Biology, University of Georgia, Athens, GA 30602
                Author notes
                CORRESPONDENCE Daniel J. Campbell: campbell@ 123456benaroyaresearch.org
                Article
                20131142
                10.1084/jem.20131142
                3892972
                24378538
                b0a90f3d-5fdb-4ece-94ac-87d982617fc8
                © 2014 Smigiel et al.

                This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 3.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/3.0/).

                History
                : 31 May 2013
                : 27 November 2013
                Categories
                Article

                Medicine
                Medicine

                Comments

                Comment on this article