13
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Publish your biodiversity research with us!

      Submit your article here.

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      DNA barcoding of Zygaenidae (Lepidoptera): results and perspectives

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The present study provides a DNA barcode library for the world Zygaenidae (Lepidoptera). This study reports 1031 sequence data of the COI gene DNA barcodes for more than 240 species in four of the five subfamilies of the family Zygaenidae. This is about 20% of the world Zygaenidae species. Our results demonstrate the specificity of the COI gene sequences at the species level in most of the studied Zygaenidae and agree with already established taxonomic opinions. The study confirms the effectiveness of DNA barcoding as a tool for determination of most Zygaenidae species. However, some of the results are contradictory. Some cases of shared barcodes have been found, as well as cases of deep intraspecific sequence divergence in species that are well separated by morphological and biological characters. These cases are discussed in detail. Overall, when combined with morphological and biochemical data, as well as biological and ecological observations, DNA barcoding results can be a useful support for taxonomic decisions.

          Related collections

          Most cited references16

          • Record: found
          • Abstract: not found
          • Article: not found

          An inexpensive, automation-friendly protocol for recovering high-quality DNA

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Higher phylogeny of zygaenid moths (Insecta: Lepidoptera) inferred from nuclear and mitochondrial sequence data and the evolution of larval cuticular cavities for chemical defence.

            Zygaenid moths are capable of releasing hydrogen cyanide in their defense by enzymatic break-down of cyanoglucosides, but only larvae of chalcosiine and zygaenine moths store cyanogenic compounds in cuticular cavities and thus are able to discharge defense droplets, which effectively deter potential predators. A previously proposed phylogeny of Zygaenidae hypothesized a sister group relationship of chalcosiine and zygaenine moths because of their similar larval defense system. Not all chalcosiine taxa possess cuticular cavities, however, and a comparable defense mechanism has been reported in larvae of the zygaenoid family Heterogynidae. Considering sequence data of seven molecular loci, the present study estimates the posterior probability of phylogenetic hypotheses explaining the occurrence of larval cuticular cavities. The molecular data confirm the previous exclusion of Himantopteridae from Zygaenidae and suggest their close affinity to Somabrachyidae. The sequence data also corroborate the recently proposed exclusion of the Phaudinae from the Zygaenidae, because this subfamily is recovered in a reasonably well supported species cluster consisting of members of the families Lacturidae, Limacodidae, Himantopteridae, and Somabrachyidae. We consequently agree to raise Phaudinae to family rank. Within Zygaenidae, the subfamilies Callizygaeninae, Chalcosiinae, and Procridinae most likely constitute a monophyletic group, which is sister to the Zygaeninae. Our results imply that cuticular cavities were probably present in the larvae of the most recent common ancestor of Zygaenidae. Heterogynidae cannot be confirmed as sister taxon to this family, but appear at the very first split of the Zygaenoidea, although with poor support. The specific pattern of taxa in the molecular phylogeny showing larval cuticular cavities opens the possibility that these structures could have been already present in the most recent common ancestor of the Zygaenoidea.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Low diversity but high differentiation: the population genetics of Aglaope infausta (Zygaenidae: Lepidoptera)

                Bookmark

                Author and article information

                Journal
                Nota Lepidopterologica
                NL
                Pensoft Publishers
                2367-5365
                0342-7536
                October 02 2019
                October 02 2019
                : 42
                : 2
                : 137-150
                Article
                10.3897/nl.42.33190
                b0c64d83-f727-47e4-8dbd-93a510991e63
                © 2019

                http://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article