26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Polar or Apolar—The Role of Polarity for Urea-Induced Protein Denaturation

      research-article
      , *
      PLoS Computational Biology
      Public Library of Science

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Urea-induced protein denaturation is widely used to study protein folding and stability; however, the molecular mechanism and driving forces of this process are not yet fully understood. In particular, it is unclear whether either hydrophobic or polar interactions between urea molecules and residues at the protein surface drive denaturation. To address this question, here, many molecular dynamics simulations totalling ca. 7 µs of the CI2 protein in aqueous solution served to perform a computational thought experiment, in which we varied the polarity of urea. For apolar driving forces, hypopolar urea should show increased denaturation power; for polar driving forces, hyperpolar urea should be the stronger denaturant. Indeed, protein unfolding was observed in all simulations with decreased urea polarity. Hyperpolar urea, in contrast, turned out to stabilize the native state. Moreover, the differential interaction preferences between urea and the 20 amino acids turned out to be enhanced for hypopolar urea and suppressed (or even inverted) for hyperpolar urea. These results strongly suggest that apolar urea–protein interactions, and not polar interactions, are the dominant driving force for denaturation. Further, the observed interactions provide a detailed picture of the underlying molecular driving forces. Our simulations finally allowed characterization of CI2 unfolding pathways. Unfolding proceeds sequentially with alternating loss of secondary or tertiary structure. After the transition state, unfolding pathways show large structural heterogeneity.

          Author Summary

          To perform their physiological function, proteins have to fold into their characteristic three-dimensional structure. While the folded state is stable under physiological conditions, changes in the solvent can destabilize the folded state and even induce denaturation. One of the most commonly used denaturants is urea. Despite its widespread use to study protein folding and stability, however, the molecular mechanism and particularly the driving forces of urea-induced protein denaturation are not yet understood. Two mechanisms have been suggested, according to which denaturation is driven either by polar interactions via hydrogen bonds or by hydrophobic interactions with apolar amino acids. By systematically varying urea polarity and quantifying the interactions of the solvent molecules with all amino acids of the protein, the present simulation study reveals that it is mainly the apolar interactions that drive denaturation. Our results suggest a coherent microscopic picture for urea-induced denaturation and bear more general implications for protein stability in other environments, e.g., in chaperone-assisted folding.

          Related collections

          Most cited references56

          • Record: found
          • Abstract: found
          • Article: not found

          Folding of chymotrypsin inhibitor 2. 1. Evidence for a two-state transition.

          The reversible folding and unfolding of barley chymotrypsin inhibitor 2 (CI2) appears to be a rare example in which both equilibria and kinetics are described by a two-state model. Equilibrium denaturation by guanidinium chloride and heat is completely reversible, and the data can be fitted to a simple two-state model involving only native and denatured forms. The free energy of folding in the absence of denaturant, delta GH2O, at pH 6.3, is calculated to be 7.03 +/- 0.16 and 7.18 +/- 0.43 kcal mol-1 for guanidinium chloride and thermal denaturation, respectively. Scanning microcalorimetry shows that the ratio of the van't Hoff enthalpy of denaturation to the calorimetric enthalpy of denaturation does not deviate from unity, the value observed for a two-state transition, over the pH range 2.2-3.5. The heat capacity change for denaturation is found to be 0.789 kcal mol-1 K-1. The rate of unfolding of CI2 is first order and increases exponentially with increasing guanidinium chloride concentration. Refolding, however, is complex and involves at least three well-resolved phases. The three phases result from heterogeneity of the unfolded form due to proline isomerization. The fast phase, 77% of the amplitude, corresponds to the refolding of the fraction of the protein that has all its prolines in a native trans conformation. The rate of this major phase decreases exponentially with increasing guanidinium chloride concentration. The unfolding and refolding kinetics can also be fitted to a two-state model.(ABSTRACT TRUNCATED AT 250 WORDS)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The structure of the transition state for folding of chymotrypsin inhibitor 2 analysed by protein engineering methods: evidence for a nucleation-condensation mechanism for protein folding.

            The 64-residue protein chymotrypsin inhibitor 2 (CI2) is a single module of structure. It folds and unfolds as a single co-operative unit by simple two-state kinetics via a single rate determining transition state. This transition state has been characterized at the level of individual residues by analysis of the rates and equilibria of folding of some 100 mutants strategically distributed at 45 sites throughout the protein. Only one residue, a helical residue (Ala16) buried in the hydrophobic core, has its full native interaction energy in the transition state. The only region of structure which is well developed in the transition state is the alpha-helix (residues 12 to 24). But, the interactions within it are weakened, especially at the C-terminal region. The rest of the protein has varying degrees of weakly formed structure. Thus, secondary and tertiary interactions appear to form concurrently. These data, reinforced by studies on the structures of peptide fragments, fit a "nucleation-condensation" model in which the overall structure condenses around an element of structure, the nucleus, that itself consolidates during the condensation. The high energy transition state is composed of the whole of the molecule making a variety of weak interactions, the nucleus being those residues that make the strongest interactions. The nucleus here is part of the alpha-helix and some distant residues in the sequence with which it makes contacts. The remainder of the protein has to be sufficiently ordered that it provides the necessary interactions to stabilize the nucleus. The nucleus is only weakly formed in the denatured state but develops in the transition state. The onrush of stability as the nucleus consolidates its local and long range interactions is so rapid that it is not yet fully formed in the transition state. The formation of the nucleus is thus coupled with the condensation. These results are consistent with a recent simulation of the folding of a computer model protein on a lattice which is found to proceed by a nucleation-growth mechanism. We suggest that the mechanism of folding of CI2 may be a common theme in protein folding whereby fundamental folding units of larger proteins, which are modelled by the folding of CI2, form by nucleation-condensation events and coalesce, perhaps in a hierarchical manner.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Interactions between hydrophobic and ionic solutes in aqueous guanidinium chloride and urea solutions: lessons for protein denaturation mechanism.

              In order to clarify the mechanism of denaturant-induced unfolding of proteins we have calculated the interactions between hydrophobic and ionic species in aqueous guanidinium chloride and urea solutions using molecular dynamics simulations. Hydrophobic association is not significantly changed in urea or guanidinium chloride solutions. The strength of interaction between ion pairs is greatly diminished by the guanidinium ion. Although the changes in electrostatic interactions in urea are small, examination of structures, using appropriate pair functions, of urea and water around the solutes show strong hydrogen bonding between urea's carbonyl oxygen and the positively charged solute. Our results strongly suggest protein denaturation occurs by the direct interaction model according to which the most commonly used denaturants unfold proteins by altering electrostatic interactions either by solvating the charged residues or by engaging in hydrogen bonds with the protein backbone. To further validate the direct interaction model we show that, in urea and guanidinium chloride solutions, unfolding of an unusually stable helix (H1) from mouse PrPC (residues 144-153) occurs by hydrogen bonding of denaturants to charged side chains and backbone carbonyl groups.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Comput Biol
                plos
                ploscomp
                PLoS Computational Biology
                Public Library of Science (San Francisco, USA )
                1553-734X
                1553-7358
                November 2008
                November 2008
                14 November 2008
                : 4
                : 11
                : e1000221
                Affiliations
                [1]Department of Theoretical and Computational Biophysics, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
                Stanford University, United States of America
                Author notes

                Conceived and designed the experiments: MCS HG. Performed the experiments: MCS. Analyzed the data: MCS. Wrote the paper: MCS HG.

                Article
                08-PLCB-RA-0563R3
                10.1371/journal.pcbi.1000221
                2570617
                19008937
                b0ccb3c8-76fc-484f-9261-ef770bcca078
                Stumpe, Grubmüller. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 10 July 2008
                : 30 September 2008
                Page count
                Pages: 10
                Categories
                Research Article
                Biophysics/Protein Folding
                Biophysics/Theory and Simulation
                Computational Biology/Molecular Dynamics

                Quantitative & Systems biology
                Quantitative & Systems biology

                Comments

                Comment on this article