29
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Microbes and Viruses Are Bugging the Gut in Celiac Disease. Are They Friends or Foes?

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The links between microorganisms/viruses and autoimmunity are complex and multidirectional. A huge number of studies demonstrated the triggering impact of microbes and viruses as the major environmental factors on the autoimmune and inflammatory diseases. However, growing evidences suggest that infectious agents can also play a protective role or even abrogate these processes. This protective crosstalk between microbes/viruses and us might represent a mutual beneficial equilibrium relationship between two cohabiting ecosystems. The protective pathways might involve post-translational modification of proteins, decreased intestinal permeability, Th1 to Th2 immune shift, induction of apoptosis, auto-aggressive cells relocation from the target organ, immunosuppressive extracellular vesicles and down regulation of auto-reactive cells by the microbial derived proteins. Our analysis demonstrates that the interaction of the microorganisms/viruses and celiac disease (CD) is always a set of multidirectional processes. A deeper inquiry into the CD interplay with Herpes viruses and Helicobacter pylori demonstrates that the role of these infections, suggested to be potential CD protectors, is not as controversial as for the other infectious agents. The outcome of these interactions might be due to a balance between these multidirectional processes.

          Related collections

          Most cited references187

          • Record: found
          • Abstract: found
          • Article: not found

          Life in the human stomach: persistence strategies of the bacterial pathogen Helicobacter pylori.

          The bacterial pathogen Helicobacter pylori has co-evolved with humans and colonizes approximately 50% of the human population, but only causes overt gastric disease in a subset of infected hosts. In this Review, we discuss the pathogenesis of H. pylori and the mechanisms it uses to promote persistent colonization of the gastric mucosa, with a focus on recent insights into the role of the virulence factors vacuolating cytotoxin (VacA), cytotoxin-associated gene A (CagA) and CagL. We also describe the immunobiology of H. pylori infection and highlight how this bacterium manipulates the innate and adaptive immune systems of the host to promote its own persistence.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Horizontal Gene Exchange in Environmental Microbiota

            Horizontal gene transfer (HGT) plays an important role in the evolution of life on the Earth. This view is supported by numerous occasions of HGT that are recorded in the genomes of all three domains of living organisms. HGT-mediated rapid evolution is especially noticeable among the Bacteria, which demonstrate formidable adaptability in the face of recent environmental changes imposed by human activities, such as the use of antibiotics, industrial contamination, and intensive agriculture. At the heart of the HGT-driven bacterial evolution and adaptation are highly sophisticated natural genetic engineering tools in the form of a variety of mobile genetic elements (MGEs). The main aim of this review is to give a brief account of the occurrence and diversity of MGEs in natural ecosystems and of the environmental factors that may affect MGE-mediated HGT.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Herpesviruses: latency and reactivation – viral strategies and host response

              Eight members of the Herpesviridae family commonly infect humans, and close to 100% of the adult population is infected with at least one of these. The five that cause the most health concerns are: herpes simplex virus (HSV) type 1 and 2, Epstein–Barr virus (EBV), cytomegalovirus (CMV), and varicella zoster virus (VZV). In addition, there are human herpes virus (HHV) types 6–8. The review starts by introducing possible viral strategies in general. The particular biology and host relationship of the various human herpesviruses, including their pathology, are examined subsequently. Factors that contribute to the maintenance of latency and reactivation of viral replication are discussed. There will be special reference to how these viruses exploit and contribute to pathology in the oral cavity. Reactivation does not necessarily imply clinical symptoms, as reflected in the asymptomatic shedding of EBV and CMV from oral mucosa. The immune response and the level of viral output are both important to the consequences experienced.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                02 August 2017
                2017
                : 8
                : 1392
                Affiliations
                [1] 1The Ruth and Bruce Rappaport Faculty of Medicine, Technion Israel Institute of Technology Haifa, Israel
                [2] 2Department of Research, AESKU.KIPP Institute Wendelsheim, Germany
                [3] 3Central Research Laboratory, Kazan State Medical Academy Kazan Kazan, Russia
                Author notes

                Edited by: Kuldeep Dhama, Indian Veterinary Research Institute (IVRI), India

                Reviewed by: Mario M. D'Elios, University of Florence, Italy; Maryam Dadar, Razi Vaccine and Serum Research Institute, Iran

                *Correspondence: Aaron Lerner aaronlerner1948@ 123456gmail.com

                This article was submitted to Microbial Immunology, a section of the journal Frontiers in Microbiology

                Article
                10.3389/fmicb.2017.01392
                5539691
                28824555
                b0d49e6c-a7d8-48e1-addf-0e7e4e1482b9
                Copyright © 2017 Lerner, Arleevskaya, Schmiedl and Matthias.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 15 May 2017
                : 10 July 2017
                Page count
                Figures: 1, Tables: 3, Equations: 0, References: 216, Pages: 16, Words: 15527
                Categories
                Microbiology
                Review

                Microbiology & Virology
                celiac disease,bacteria,viruses,gut,microbiome,environmental inducer,environmental protectors

                Comments

                Comment on this article