7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Low-Molecular-Weight Heparins: Reduced Size Particulate Systems for Improved Therapeutic Outcomes

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A wide range of diseases have been treated using low-molecular-weight heparins (LMWHs), the drug of choice for anticoagulation. Owing to their better pharmacokinetic features compared to those of unfractionated heparin (uFH), several systems incorporating LMWHs have been investigated to deliver and improve their therapeutic outcomes, especially through development of their micro- and nano-particles. This review article describes current perspectives on the fabrication, characterization, and application of LMWHs-loaded micro- and nano-particles to achieve ameliorated bioavailability. The valuable applications of LMWH will continue to encourage researchers to identify efficient delivery systems that have specific release characteristics and ameliorated bioavailability, overcoming the challenges presented by biological obstructions and the physicochemical properties of LMWHs.

          Related collections

          Most cited references93

          • Record: found
          • Abstract: found
          • Article: not found

          Parenteral anticoagulants: Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines.

          This article describes the pharmacology of approved parenteral anticoagulants. These include the indirect anticoagulants, unfractionated heparin (UFH), low-molecular-weight heparins (LMWHs), fondaparinux, and danaparoid, as well as the direct thrombin inhibitors hirudin, bivalirudin, and argatroban. UFH is a heterogeneous mixture of glycosaminoglycans that bind to antithrombin via a unique pentasaccharide sequence and catalyze the inactivation of thrombin, factor Xa, and other clotting enzymes. Heparin also binds to cells and plasma proteins other than antithrombin causing unpredictable pharmacokinetic and pharmacodynamic properties and triggering nonhemorrhagic side effects, such as heparin-induced thrombocytopenia (HIT) and osteoporosis. LMWHs have greater inhibitory activity against factor Xa than thrombin and exhibit less binding to cells and plasma proteins than heparin. Consequently, LMWH preparations have more predictable pharmacokinetic and pharmacodynamic properties, have a longer half-life than heparin, and are associated with a lower risk of nonhemorrhagic side effects. LMWHs can be administered once daily or bid by subcutaneous injection, without coagulation monitoring. Based on their greater convenience, LMWHs have replaced UFH for many clinical indications. Fondaparinux, a synthetic pentasaccharide, catalyzes the inhibition of factor Xa, but not thrombin, in an antithrombin-dependent fashion. Fondaparinux binds only to antithrombin. Therefore, fondaparinux-associated HIT or osteoporosis is unlikely to occur. Fondaparinux exhibits complete bioavailability when administered subcutaneously, has a longer half-life than LMWHs, and is given once daily by subcutaneous injection in fixed doses, without coagulation monitoring. Three additional parenteral direct thrombin inhibitors and danaparoid are approved as alternatives to heparin in patients with HIT.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Biopolymer-Based Nanoparticles for Drug/Gene Delivery and Tissue Engineering

            There has been a great interest in application of nanoparticles as biomaterials for delivery of therapeutic molecules such as drugs and genes, and for tissue engineering. In particular, biopolymers are suitable materials as nanoparticles for clinical application due to their versatile traits, including biocompatibility, biodegradability and low immunogenicity. Biopolymers are polymers that are produced from living organisms, which are classified in three groups: polysaccharides, proteins and nucleic acids. It is important to control particle size, charge, morphology of surface and release rate of loaded molecules to use biopolymer-based nanoparticles as drug/gene delivery carriers. To obtain a nano-carrier for therapeutic purposes, a variety of materials and preparation process has been attempted. This review focuses on fabrication of biocompatible nanoparticles consisting of biopolymers such as protein (silk, collagen, gelatin, β-casein, zein and albumin), protein-mimicked polypeptides and polysaccharides (chitosan, alginate, pullulan, starch and heparin). The effects of the nature of the materials and the fabrication process on the characteristics of the nanoparticles are described. In addition, their application as delivery carriers of therapeutic drugs and genes and biomaterials for tissue engineering are also reviewed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              More than an anticoagulant: Do heparins have direct anti-inflammatory effects?

              The heparins, well-known for their anticoagulant properties, may also have anti-inflammatory effects that could contribute to their effectiveness in the treatment of venous thromboembolism and other vascular diseases. This review focuses on the inflammatory pathophysiology that underlies the development of thrombosis and the putative effects of heparin on these pathways. We present evidence supporting the use of heparin for other indications, including autoimmune disease, malignancy, and disseminated intravascular coagulation. These considerations highlight the need for further research to elucidate the mechanisms of the possible pleiotropic effects of the heparins, with a view to advancing treatments based upon heparin derivatives.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Role: Academic Editor
                Journal
                Molecules
                Molecules
                molecules
                Molecules : A Journal of Synthetic Chemistry and Natural Product Chemistry
                MDPI
                1420-3049
                18 July 2018
                July 2018
                : 23
                : 7
                : 1757
                Affiliations
                [1 ]School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China; tauriansfairy88@ 123456gmail.com (F.A.); 15951712208@ 123456163.com (X.W.); 18994103736@ 123456163.com (G.W.); 18018027031@ 123456163.com (S.W.)
                [2 ]State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China; kessejnr@ 123456yahoo.com
                Author notes
                [* ]Correspondence: 1020040855@ 123456cpu.edu.cn ; Tel.: +86-157-2080-6012
                Article
                molecules-23-01757
                10.3390/molecules23071757
                6100363
                30021958
                b0f0631d-4a09-4afe-a098-c1815ba48df4
                © 2018 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 24 May 2018
                : 04 July 2018
                Categories
                Review

                low molecular weight heparins,stability,encapsulation,polymers,bioavailability

                Comments

                Comment on this article