12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Renal Inflammation in DOCA-Salt Hypertension : Role of Renal Nerves and Arterial Pressure

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Recent reports indicate that, in addition to treating hypertension, renal denervation (RDN) also mitigates renal inflammation. However, because RDN decreases renal perfusion pressure, it is unclear whether these effects are because of the direct effects of RDN on inflammatory signaling or secondary to decreased arterial pressure (AP). Therefore, this study was conducted to elucidate the contribution of renal nerves to renal inflammation in the deoxycorticosterone (DOCA)-salt rat, a model in which RDN decreases AP and abolishes renal inflammation. In Experiment 1, we assessed the temporal changes in renal inflammation by measuring renal cytokines and AP in DOCA-salt rats. Uninephrectomized (1K) adult male Sprague Dawley rats that received surgical RDN or sham (Sham) were administered DOCA (100 mg, SC) and 0.9% saline for 21 days. AP was measured by radiotelemetry, and urinary cytokine excretion was measured repeatedly. In Experiment 2, the contribution of renal nerves in renal inflammation was assessed in a 2-kidney DOCA-salt rat to control for renal perfusion pressure. DOCA-salt treatment was administered after unilateral (U-)RDN. In Experiment 1, DOCA-salt-induced increases in AP and renal inflammation (assessed by urinary cytokines) were attenuated by RDN versus Sham. In Experiment 2, GRO/KC (growth-related oncogene/keratinocyte chemoattractant), MCP (monocyte chemoattractant protein)-1, and macrophage infiltration were lower in the denervated kidney versus the contralateral Sham kidney. No differences in T-cell infiltration were observed. Together, these data support the hypothesis that renal nerves mediate, in part, the development of renal inflammation in the DOCA-salt rat independent of hypertension. The mechanisms and cell-specificity mediating these effects require further investigation.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          Inflammation, immunity, and hypertensive end-organ damage.

          For >50 years, it has been recognized that immunity contributes to hypertension. Recent data have defined an important role of T cells and various T cell-derived cytokines in several models of experimental hypertension. These studies have shown that stimuli like angiotensin II, deoxycorticosterone acetate-salt, and excessive catecholamines lead to formation of effector like T cells that infiltrate the kidney and perivascular regions of both large arteries and arterioles. There is also accumulation of monocyte/macrophages in these regions. Cytokines released from these cells, including interleukin-17, interferon-γ, tumor necrosis factorα, and interleukin-6 promote both renal and vascular dysfunction and damage, leading to enhanced sodium retention and increased systemic vascular resistance. The renal effects of these cytokines remain to be fully defined, but include enhanced formation of angiotensinogen, increased sodium reabsorption, and increased renal fibrosis. Recent experiments have defined a link between oxidative stress and immune activation in hypertension. These have shown that hypertension is associated with formation of reactive oxygen species in dendritic cells that lead to formation of gamma ketoaldehydes, or isoketals. These rapidly adduct to protein lysines and are presented by dendritic cells as neoantigens that activate T cells and promote hypertension. Thus, cells of both the innate and adaptive immune system contribute to end-organ damage and dysfunction in hypertension. Therapeutic interventions to reduce activation of these cells may prove beneficial in reducing end-organ damage and preventing consequences of hypertension, including myocardial infarction, heart failure, renal failure, and stroke.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Pathophysiology of hypertensive renal damage: implications for therapy.

            Unlike the majority of patients with uncomplicated hypertension in whom minimal renal damage develops in the absence of severe blood pressure (BP) elevations, patients with diabetic and nondiabetic chronic kidney disease (CKD) exhibit an increased vulnerability to even moderate BP elevations. Investigations in experimental animal models have revealed that this enhanced susceptibility is a consequence of an impairment of the renal autoregulatory mechanisms that normally attenuate the transmission of elevated systemic pressures to the glomeruli in uncomplicated hypertension. The markedly lower BP threshold for renal damage and the steeper slope of relationship between BP and renal damage in such states necessitates that BP be lowered into the normotensive range to prevent progressive renal damage. When BP is accurately measured using radiotelemetry in animal models, the renal protection provided by renin-angiotensin system (RAS) blockade is proportional to the BP reduction with little evidence of BP-independent protection. A critical evaluation of the clinical data also suggests that the BP-independent renoprotection by RAS blockade has been overemphasized and that achieving lower BP targets is more important than the selection of antihypertensive regimens. However, achievement of such BP goals is difficult in CKD patients without aggressive diuresis, because of their proclivity for salt retention. The effectiveness of RAS blockers in lowering BP in patients who have been adequately treated with diuretics, along with their potassium-sparing and magnesium-sparing effects, provides a more compelling rationale for the use of RAS blockade in the treatment of CKD patients than any putative BP-independent renoprotective superiority.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Renal Denervation Prevents Immune Cell Activation and Renal Inflammation in Angiotensin II-Induced Hypertension.

              Inflammation and adaptive immunity play a crucial role in the development of hypertension. Angiotensin II and probably other hypertensive stimuli activate the central nervous system and promote T-cell activation and end-organ damage in peripheral tissues.
                Bookmark

                Author and article information

                Journal
                Hypertension
                Hypertension
                Ovid Technologies (Wolters Kluwer Health)
                0194-911X
                1524-4563
                May 2019
                May 2019
                : 73
                : 5
                : 1079-1086
                Affiliations
                [1 ]From the Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis (C.T.B., M.M.G., D.A.V.H., J.W.O.)
                [2 ]Department of Pharmacology and Toxicology, Michigan State University, East Lansing (G.D.F.).
                Article
                10.1161/HYPERTENSIONAHA.119.12762
                6540804
                30879356
                b0f8631e-36c8-478f-9749-ca89fd96aaf8
                © 2019
                History

                Comments

                Comment on this article