+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Best Practices in Dengue Surveillance: A Report from the Asia-Pacific and Americas Dengue Prevention Boards

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.



          Dengue fever is a virus infection that is spread by the Aedes aegypti mosquito and can cause severe disease especially in children. Dengue fever is a major problem in tropical and sub-tropical regions of the world.

          Methodology/Principal Findings

          We invited dengue experts from around the world to attend meetings to discuss dengue surveillance. We reviewed literature, heard detailed reports on surveillance programs, and shared expert opinions.


          Presentations by 22 countries were heard during the 2.5 day meetings. We describe the best methods of surveillance in general, the stakeholders in dengue surveillance, and the steps from mosquito bite to reporting of a dengue case to explore how best to carry out dengue surveillance. We also provide details and a comparison of the dengue surveillance programs by the presenting countries.


          The experts provided recommendations for achieving the best possible data from dengue surveillance accepting the realities of the real world (e.g., limited funding and staff). Their recommendations included: (1) Every dengue endemic country should make reporting of dengue cases to the government mandatory; (2) electronic reporting systems should be developed and used; (3) at minimum dengue surveillance data should include incidence, hospitalization rates, deaths by age group; (4) additional studies should be completed to check the sensitivity of the system; (5) laboratories should share expertise and data; (6) tests that identify dengue virus should be used in patients with fever for four days or less and antibody tests should be used after day 4 to diagnose dengue; and (7) early detection and prediction of dengue outbreaks should be goals for national surveillance systems.

          Author Summary

          The Pediatric Dengue Vaccine Initiative organized Dengue Prevention Boards in the Asia-Pacific and the Americas regions consisting of dengue experts from endemic countries. Both Boards convened meetings to review issues in surveillance. Through presentations, facilitated discussions, and surveys, the Boards identified best practices in dengue surveillance including: (1) Dengue should be a notifiable disease in endemic countries; (2) World Health Organization regional case definitions should be consistently applied; (3) electronic reporting systems should be developed and used broadly to speed delivery of data to stakeholders; (4) minimum reporting should include incidence rates of dengue fever, dengue hemorrhagic fever, dengue shock syndrome, and dengue deaths, and hospitalization and mortality rates should be reported by age group; (5) periodic additional studies (e.g., capture/recapture) should be conducted to assess under-detection, under-reporting, and the quality of surveillance; (6) laboratory methods and protocols should be standardized; (7) national authorities should encourage laboratories to develop networks to share expertise and data; and (8) RT-PCR and virus isolation (and possibly detection of the NS1 protein) are the recommended methods for confirmation of an acute dengue infection, but are recommended only for the four days after onset of fever—after day 4, IgM-capture enzyme-linked immunosorbent assay is recommended.

          Related collections

          Most cited references 18

          • Record: found
          • Abstract: found
          • Article: not found

          The global emergence/resurgence of arboviral diseases as public health problems.

          During the past 20 years there has been a dramatic resurgence or emergence of epidemic arboviral diseases affecting both humans and domestic animals. These epidemics have been caused primarily by viruses thought to be under control such as dengue, Japanese encephalitis, yellow fever, and Venezuelan equine encephalitis, or viruses that have expanded their geographic distribution such as West Nile and Rift Valley fever. Several of these viruses are presented as case studies to illustrate the changing epidemiology. The factors responsible for the dramatic resurgence of arboviral diseases in the waning years of the 20th century are discussed, as is the need for rebuilding the public health infrastructure to deal with epidemic vector-borne diseases in the 21st century.
            • Record: found
            • Abstract: found
            • Article: not found

            The Japanese experience with vaccinating schoolchildren against influenza.

            Influenza epidemics lead to increased mortality, principally among elderly persons and others at high risk, and in most developed countries, influenza-control efforts focus on the vaccination of this group. Japan, however, once based its policy for the control of influenza on the vaccination of schoolchildren. From 1962 to 1987, most Japanese schoolchildren were vaccinated against influenza. For more than a decade, vaccination was mandatory, but the laws were relaxed in 1987 and repealed in 1994; subsequently, vaccination rates dropped to low levels. When most schoolchildren were vaccinated, it is possible that herd immunity against influenza was achieved in Japan. If this was the case, both the incidence of influenza and mortality attributed to influenza should have been reduced among older persons. We analyzed the monthly rates of death from all causes and death attributed to pneumonia and influenza, as well as census data and statistics on the rates of vaccination for both Japan and the United States from 1949 through 1998. For each winter, we estimated the number of deaths per month in excess of a base-line level, defined as the average death rate in November. The excess mortality from pneumonia and influenza and that from all causes were highly correlated in each country. In the United States, these rates were nearly constant over time. With the initiation of the vaccination program for schoolchildren in Japan, excess mortality rates dropped from values three to four times those in the United States to values similar to those in the United States. The vaccination of Japanese children prevented about 37,000 to 49,000 deaths per year, or about 1 death for every 420 children vaccinated. As the vaccination of schoolchildren was discontinued, the excess mortality rates in Japan increased. The effect of influenza on mortality is much greater in Japan than in the United States and can be measured about equally well in terms of deaths from all causes and deaths attributed to pneumonia or influenza. Vaccinating schoolchildren against influenza provides protection and reduces mortality from influenza among older persons.
              • Record: found
              • Abstract: found
              • Article: not found

              Effect of introduction of the pneumococcal conjugate vaccine on drug-resistant Streptococcus pneumoniae.

              Five of seven serotypes in the pneumococcal conjugate vaccine, introduced for infants in the United States in 2000, are responsible for most penicillin-resistant infections. We examined the effect of this vaccine on invasive disease caused by resistant strains. We used laboratory-based data from Active Bacterial Core surveillance to measure disease caused by antibiotic-nonsusceptible pneumococci from 1996 through 2004. Cases of invasive disease, defined as disease caused by pneumococci isolated from a normally sterile site, were identified in eight surveillance areas. Isolates underwent serotyping and susceptibility testing. Rates of invasive disease caused by penicillin-nonsusceptible strains and strains not susceptible to multiple antibiotics peaked in 1999 and decreased by 2004, from 6.3 to 2.7 cases per 100,000 (a decline of 57 percent; 95 percent confidence interval, 55 to 58 percent) and from 4.1 to 1.7 cases per 100,000 (a decline of 59 percent; 95 percent confidence interval, 58 to 60 percent), respectively. Among children under two years of age, disease caused by penicillin-nonsusceptible strains decreased from 70.3 to 13.1 cases per 100,000 (a decline of 81 percent; 95 percent confidence interval, 80 to 82 percent). Among persons 65 years of age or older, disease caused by penicillin-nonsusceptible strains decreased from 16.4 to 8.4 cases per 100,000 (a decline of 49 percent). Rates of resistant disease caused by vaccine serotypes fell 87 percent. An increase was seen in disease caused by serotype 19A, a serotype not included in the vaccine (from 2.0 to 8.3 per 100,000 among children under two years of age). The rate of antibiotic-resistant invasive pneumococcal infections decreased in young children and older persons after the introduction of the conjugate vaccine. There was an increase in infections caused by serotypes not included in the vaccine. Copyright 2006 Massachusetts Medical Society.

                Author and article information

                Role: Editor
                PLoS Negl Trop Dis
                PLoS Neglected Tropical Diseases
                Public Library of Science (San Francisco, USA )
                November 2010
                16 November 2010
                : 4
                : 11
                [1 ]Pediatric Dengue Vaccine Initiative, International Vaccine Institute, Seoul, Republic of Korea
                [2 ]Amy Stone Scientific and Medical Communications, Inc., Atlanta, Georgia, United States of America
                [3 ]Department of Documentation and Communication, Office of Governing Bodies, Office of the Director-General, World Health Organization (WHO), Geneva, Switzerland
                [4 ]The Asia-Pacific and Americas Dengue Prevention Boards Surveillance Working Group, Pediatric Dengue Vaccine Initiative, International Vaccine Institute, Seoul, Republic of Korea
                Duke University-National University of Singapore, Singapore
                Author notes

                Analyzed the data: MEB. Wrote the paper: MEB. Organized the meeting, facilitated and presented, and synthesized the comments and recommendations: MEB. Assisted with organization of the meeting, facilitating discussions, synthesizing comments and recommendations, and revising and editing the recommendations: AS. Assisted with summarizing of data and editing of paper: DWF. Participated in the discussion, writing, and editing of the paper: JNH SKL SV MGG JFM-G SBH GWL JK RM HSM.

                ¶ Membership of The Asia-Pacific and Americas Dengue Prevention Boards Surveillance Working Group is provided in the Acknowledgments.

                Beatty et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                Page count
                Pages: 7
                Research Article
                Public Health and Epidemiology

                Infectious disease & Microbiology


                Comment on this article