11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Novel Avian Influenza A(H5N8) Viruses in Migratory Birds, China, 2013–2014

      letter

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          To the Editor: Novel highly pathogenic avian influenza (HPAI) A(H5N8) virus infections were first detected in poultry in eastern China in 2010 ( 1 ); the virus caused outbreaks in South Korea and Japan in 2014 ( 2 ) and reached Europe and North America by early 2015 ( 3 – 6 ). Phylogenetic analysis indicated that novel HPAI subtype H5N8 viruses might have originated in China and then circulated in East Asia countries and that the global geographic dissemination of this virus was strongly associated with the migration of wild birds ( 7 ). However, the role of migratory birds in the initial introduction and spread of novel H5N8 strains in China and other countries in the region is unclear. Shanghai, located at the Yangtze River estuary on the eastern coast of China, is a crucial stopover for migratory birds in East Asia. We report the presence of novel H5N8 strains from migratory birds sampled in Shanghai from October 2013 through December 2014. A total of 26 novel H5N8 viruses were detected from migratory ducks and curlews captured and swabbed during their wintering period at the coastal wetlands of Shanghai. We collected 19 H5N8 viruses from 16 common teals (Anas crecca), 2 falcated ducks (A. falcata), and 1 spot-billed duck (A. poecilorhyncha) sampled in 2013 and 7 viruses from Eurasian curlews (Numenius arquata) sampled in 2014. Common teals were also found to be infected with subtype H5N1, detected by N1 gene fragments in 3 mixed-infection and 2 single-infection samples (Technical Appendix). Sequences from this study were deposited in GenBank (accession nos. KT936635–KT936716). Homology BLAST (http://blast.st-va.ncbi.nlm.nih.gov/Blast.cgi) searches showed that H5 and N8 genes of 18 influenza A(H5N8) viruses in ducks had >98% similarity to H5N8 isolates W24 and 6D18 detected in poultry in Zhejiang Province ( 2 ), adjacent to Shanghai. The H5 gene in A/common teal/Shanghai/1108–1/2013(mixed) (PD1108-1) was 96% related to low pathogenicity avian influenza (LPAI) subtype H5N1 isolated from a European teal sampled in Russia in 2011 (GenBank accession no. KF462362). Of the 7 viruses from curlews, H5 and N8 isolates were closely related to isolates H68 and H297 from wild ducks reported in South Korea in early 2014 ( 8 ). Matrix genes of all novel subtype H5N8 viruses were closely related (95%–99%) to isolates from China (S11090, W24), Japan (156), and South Korea (Gochang1, S005) (online Technical Appendix Table). Phylogenetic analysis of HPAI H5 descendants of A/goose/Guangdong/1/1996(H5N1) showed that clade 2.3.4.4 ( 10 ) H5N8 viruses fall into 2 distinct groups, closely related to group A (Buan2-like) and group B (Gochang1-like) ( 8 ). The hemagglutinin (HA) genes of the 18 subtype H5N8 viruses from ducks in 2013 shared a protease cleavage site motif of REKRRKR/GLF and the sequence cluster with H5N8 viruses from eastern China poultry (W24, 6D18) ( 2 ) and Korean group B isolates (Gochang1, H52) ( 8 , 9 ) to form group B. The HA genes from all 7 H5N8 isolates from curlews in 2014 had a protease cleavage site motif of RERRRKR/GLF and the sequence cluster, along with Korean group A (Buan2-like) ( 8 , 9 ), European ( 3 , 4 ), and North American ( 7 ) H5N8 lineage viruses to form group A. The HA from PD1108-1 had a cleavage site motif (RE–TR/GLF) characteristic of LPAI HA, and its sequence clustered with the Eurasian LPAI H5 lineage (Figure). Figure Phylogenetic tree of the hemagglutinin (HA) genes of influenza A subtype H5 viruses from wild birds of Shanghai, China, 2013–2014. Boldface indicates viruses from this study; representative isolates are underlined and referred to in abbreviated form in brackets. A total of 109 HA gene sequences (≥1,594 nt) were used for tree reconstruction. Representative strains and clades are recommended by WHO/OIE/FAO H5N1 Evolution Working Group and were retrieved from Influenza Virus Resource Database (http://www.ncbi.nlm.nih.gov/genomes/FLU/Database/select.cgi) and GISAID’s EpiFluTM Database (http://platform.gisaid.org/epi3/frontend). The phylogenetic tree was constructed by using the maximum likelihood method based on the general time reversible model with bootstrap analysis (100 replicates), by MEGA version 6 (http://www.megasoftware.net/). Bootstrap values ≥50% are shown. Scale bar indicates nucleotide substitutions per site. (See Technical Appendix.) According to the sampling dates, the identification of the 18 group B H5N8 isolates from Shanghai was the earliest detection of HPAI H5N8 virus in wild birds in East Asia, before the first reported outbreak in South Korea in January 2014. Although poultry isolates from China obtained during the same period were phylogenetically clustered with group A (Figure), no group A viruses were detected in wild birds during the 2013–2014 wintering season in China. Notably, 2 of the group A Chinese poultry isolates (Q1 and s13124) have the HA cleavage site motifs of group B. Their topologically basal positions in group A (Figure) implied the connection between the 2 groups. Eurasian curlews are widely distributed in the Northern Hemisphere, including Europe, Siberia, Japan, the Korean Peninsula, and China (http://ibc.lynxeds.com/species/eurasian-curlew-numenius-arquata). Populations wintering in Shanghai have overlapped migratory routes and habitat distribution with duck species in East Asia (Shanghai Chongming Dongtan National Nature Reserve, unpub. data), which suggested possible transmission routes through overlapped habitats in their northern territory (breeding areas) or close contacts among these species. These data support the theory that asymptomatic migratory birds may have played a role in geographic dissemination of HPAI subtype H5N8 and facilitation of viral evolution and reassortment. Moreover, that HPAI subtypes H5N1 and H5N8 co-infected and co-circulated in migratory ducks suggests that rapid and active mutation and reassortment of H5 subtypes may take place in these hosts. Therefore, to monitor and then control the epidemics of H5 subtype viruses, it is urgent that more intensive surveillance be carried out in poultry and wild birds and that information be promptly shared among countries. Technical Appendix A detailed description of the study materials and methods and a table showing genetic details of H5 viruses detected in migratory birds of Shanghai, China, 2013–2014.

          Related collections

          Most cited references8

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Novel Reassortant Influenza A(H5N8) Viruses, South Korea, 2014

          To the Editor: Highly pathogenic avian influenza (HPAI) viruses have caused considerable economic losses to the poultry industry and poses potential threats to animal and human health (www.oie.int/en/ and www.who.int/en/). Since 2003, influenza A(H5N1) viruses with a hemagglutinin (HA) gene derived from A/goose/Guandong/1/96–like viruses have become endemic to 6 countries (Bangladesh, China, Egypt, India, Indonesia, and Vietnam) ( 1 ) (www.cdc.gov/). Furthermore, HPAI viruses with an H5 subtype continue to undergo substantial evolution because of extensive genetic divergence and reassortment between other subtypes of influenza viruses. Especially in China, novel subtypes of H5 HPAI virus, such as influenza A(H5N2), influenza A(H5N5), and influenza A(H5N8) viruses, were reported during 2009–2011 ( 2 , 3 ). On January 16, 2014, clinical signs of HPAI, such as decreased egg production (60%) and slightly increased mortality rates, were detected in ducks on a breeder duck farm near the Donglim Reservoir in Jeonbuk Province, South Korea. On January 17, a farmer (5 km from the Donglim Reservoir) also reported clinical signs of HPAI in breeder ducks. In addition, 100 carcasses of Baikal teals were found in the Donglim Reservoir. RNAs extracted from organs (liver, pancreas, and trachea) of 3 dead birds (1 breeder duck, 1 broiler duck, and 1 Baikal teal) were positive for H5 subtype virus by reverse transcription PCR ( 4 ). We isolated viruses from suspected specimens by inoculation into embryonated specific pathogen–free chicken eggs. The H5N8 subtype was identified by using HA and neuraminidase (NA) inhibition assays. Three viruses isolated from domestic ducks and wild birds were designated A/breeder duck/Korea/Gochang1/2014 (H5N8) (Gochang1), A/duck/Korea/Buan2/2014 (H5N8) (Buan2), and A/Baikal Teal/Korea/Donglim3/2014 (H5N8) (Donglim3). All 8 RNA genome segments of these viruses were amplified by using segment-specific primers and directly sequenced ( 5 ). Sequences of the 8 RNA segments of each virus were submitted to GenBank under accession nos. KJ413831–KJ413854. Gochang1 virus has been shown to be highly pathogenic for chickens (intravenous pathogenicity index 3.0) ( 6 ). This finding was consistent with analysis of the HA gene, as shown by a series of deduced basic amino acid sequences (Gochang1, LREKRRKR/GLF, Buan2 and Donglim3, LRERRRKR/GLF) at cleavage sites of HA ( 6 ). This outbreak of influenza A(H5N8) infection in South Korea was reported to the World Organisation for Animal Health ( 7 ). Nucleotide identity analysis with BioEdit version 7.2.5 (http://bioedit.software.informer.com/) and ClustalW (www.ebi.ac.kr/Tolls/clustalw2) showed that 3 distinct novel influenza A(H5N8) viruses emerged in South Korea. Gochang1 virus had 87%–97% sequence identities in the 8 genome segments with sequences for Buan2 and Donglim3 viruses, which had high sequence identities (>99.5%) with each other. Conservative amino acid residues within receptor binding pockets of HA (including E190, R220, G225, Q226, and G228; H3 numbering) were present in all 3 viruses, which indicated that these viruses retained affinity for the avian (sialic acid-2,3-NeuAcGal) cell surface ( 8 ). Although there was an I314V mutation in the NA of the 3 viruses, other mutations that encode oseltamivir and zanamivir resistance were not detected ( 9 ). A BLAST (www.ncbi.nlm.nih.gov/genomes/FLU/FLU.html) search and phylogenetic analysis showed that these novel H5N8 subtype viruses likely originated from reassortment between A/duck/Jiangsu/k1203/2010 (H5N8) virus and other subtypes of avian influenza virus, all of which co-circulated in birds in eastern China during 2009–2012 ( 10 ). A phylogenetic tree of partial HA gene sequences for the 3 virus isolates from South Korea and other H5 subtype viruses (n = 72), showed that Gochang1, Buan2, and Donglime3 belong to the proposed H5 clade 2.3.4.6 (Figure) ( 10 ). Figure Phylogenetic tree of hemagglutin (HA) genes of influenza A(H5N8) viruses, South Korea, 2014. Triangles indicate viruses characterized in this study. Other viruses detected in South Korea are indicated in boldface. Subtypes are indicated in parentheses. A total of 72 HA gene sequences were ≥1,600 nt. Multiple sequence alignment was performed by using ClustalW (www.ebi.ac.kr/Tolls/clustalw2). The tree was constructed by using the neighbor-joining method with the Kimura 2-parameter model and MEGA version 5.2 (www.megasoftware.net/) with 1,000 bootstrap replicates. H5, hemagglutinin 5; Gs/Gd, Goose/Guangdong; LPAI, low pathogenic avian influenza; HPAI, highly pathogenic avian influenza. Scale bar indicates nucleotide substitutions per site. The H5 and N8 genes of the 3 viruses had high nucleotide identities with A/duck/Jiangsu/k1203/2010 (H5N8) (JQ97369691–98) (H5: Gochang1, 98.9%, Buan2 and Donglim3, 97.2%; N8: Gochang1, 98.5%, Buan2 and Donglim3, 98.1%). For Gochang1 virus, polymerase basic protein 2 (PB2) and nonstructural (NS) protein had the highest identities with A/environment/Jiangxi/28/2009 (H11N9) (PB2 98.6%, NS 97.7%). The other segments showed high genetic identities with A/duck/Jiangsu/k1203/2010 (H5N8) (>98.7%), which suggested that Gochang1 virus was generated by reassortment in which the PB2 and NS genes of A/duck/Jiangsu/k1203/2010 (H5N8) were replaced by those of influenza A(H11N9) viruses. For Buan2 and Donglim3 viruses, the PB2, HA, nucleoprotein, and NA genes were highly similar to those of A/duck/Jiangsu/k1203/2010 (H5N8) (>97.2%). However, the PB1, polymerase acidic protein, matrix protein, and NS genes of this virus had the highest genetic identities with A/duck/Eastern China/1111/2011 (H5N2) (>98.2%). Therefore, Buan2 and Donglim3 viruses might be reassortants that contain PB2, HA, nucleoprotein, and NA genes from A/duck/Jiangsu/k1203/2010 (H5N8) and PB1, polymerase acidic protein, NS, and matrix genes from A/duck/Eastern China/1111/2011 (H5N2) co-circulating in the same region of China ( 2 , 10 ). We characterized 3 distinct novel reassortant influenza A(H5N8) HPAI viruses during an influenza outbreak in South Korea. Buan2 and Donglim3 viruses showed high nucleotide identities, which suggested that the outbreak viruses in domestic ducks and Baikal teals might have an identical origin. Although research on the epidemiologic features of this outbreak is currently underway, it seems likely that on the basis of reassortant sequence features of the 8 genome segments, the 3 distinct viruses originated in eastern China. These influenza viruses are a potential threat to the poultry population in South Korea, including gallinaceous birds, during movement of domestic ducks through the distribution network of live bird markets.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Highly pathogenic avian influenza virus (H5N8) in domestic poultry and its relationship with migratory birds in South Korea during 2014.

            Highly pathogenic H5N8 avian influenza viruses (HPAIVs) were introduced into South Korea during 2014, thereby caused outbreaks in wild birds and poultry farms. During the 2014 outbreak, H5N8 HPAIVs were isolated from 38 wild birds and 200 poultry farms (up to May 8, 2014). To better understand the introduction of these viruses and their relationships with wild birds and poultry farm, we analyzed the genetic sequences and available epidemiological data related to the viruses. Genetic analysis of 37 viruses isolated from wild birds and poultry farms showed that all of the isolates belonged to clade 2.3.4.6 of the hemagglutinin (HA) gene, but comprised two distinct groups. During the initial stage of the outbreak, identical isolates from each group were found in wild birds and poultry farms near Donglim Reservoir, which is a resting site for migratory birds, thereby indicating that two types of H5N8 HPAIVs were introduced into the lake at the same time. Interestingly, the one group of H5N8 HPAIV predominated around Donglim Reservoir, and the predominant virus was dispersed by wild birds among the migratory bird habitats in the western region of South Korea as time passed, and it was also detected in nearby poultry farms. Furthermore, compared with the results of the annual AIV surveillance of captured wild birds, which has been performed since 2008, more HPAIVs were isolated and H5 sero-prevalence was also detected during the 2014 outbreak. Overall, our results strongly suggest that migratory birds played a key role in the introduction and spread of viruses during the initial stage of the 2014 outbreak.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Characterization of three H5N5 and one H5N8 highly pathogenic avian influenza viruses in China.

              One H5N8 and three H5N5 highly pathogenic avian influenza (HPAI) viruses which derived their HA genes from the Asian H5N1 lineage were isolated from poultry during 2009-2010 in mainland China. Pathogenicity studies showed that these viruses were all highly virulent to chickens, while they varied from moderate to high virulence in mice and from mild to intermediate virulence in mallards. Phylogenetic analyses showed that these viruses were reassortants bearing the H5N1 backbone while acquiring PB1, NP and NA genes from unidentified non-H5N1 viruses, and had developed into three distinct genotypes (B-D). Molecular characterization indicated that all these viruses might resist to antiviral agents. Our findings highlight the emergence and development of HPAI H5 viruses of other NA subtypes in H5N1 endemic areas and their potential threat to poultry industry and public health. Copyright © 2013 Elsevier B.V. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Emerg Infect Dis
                Emerging Infect. Dis
                EID
                Emerging Infectious Diseases
                Centers for Disease Control and Prevention
                1080-6040
                1080-6059
                June 2016
                : 22
                : 6
                : 1121-1123
                Affiliations
                [1]Laboratory of Wildlife Epidemic Diseases, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, School of Life Sciences, East China Normal University, Shanghai, China (L.-C. Zhou, J. Liu, J.-M. Lyu, Z.-H. Wang, T.-H. Wang);
                [2]Shanghai Municipal Agency of Wildlife Conservation, Shanghai (E.-L. Pei, D. Wu, H.-Y. Jin); Chongming Dongtan National Nature Reserve, Shanghai (W.-J. Xue, W. Wu);
                [3]Jiuduansha Wetland National Nature Reserve, Shanghai, China (Y.-T. Cai) Wildlife Conservation Section, Shanghai Municipal Forestry Bureau, Shanghai (Y.-Y. Liu);
                [4]Research Center of Wildlife Disease, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute of Academy of Military Medical Sciences, Changchun, China (Y.-W. Gao)
                Author notes
                Address for correspondence: Zheng-Huan Wang or Tian-Hou Wang, Laboratory of Wildlife Epidemic Diseases, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Life Sciences, East China Normal University, No. 3663, North Zhongshan Rd, Shanghai, China; email: zhwang@ 123456bio.ecnu.edu.cn or thwang@ 123456bio.ecnu.edu.cn
                Article
                15-1754
                10.3201/eid2206.151754
                4880068
                27192098
                b13169e6-7157-4993-ab79-cf0c68aa0e6c
                History
                Categories
                Letters to the Editor
                Letter
                Novel Avian Influenza A(H5N8) Viruses in Migratory Birds, China, 2013–2014

                Infectious disease & Microbiology
                subtype h5n8,migratory birds,influenza,highly pathogenic avian influenza virus,viruses,china

                Comments

                Comment on this article