35
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Copy number variation leads to considerable diversity for B but not A haplotypes of the human KIR genes encoding NK cell receptors

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The KIR complex appears to be evolving rapidly in humans, and more than 50 different haplotypes have been described, ranging from four to 14 KIR loci. Previously it has been suggested that most KIR haplotypes consist of framework genes, present in all individuals, which bracket a variable number of other genes. We used a new technique to type 793 families from the United Kingdom and United States for both the presence/absence of all individual KIR genes as well as copy number and found that KIR haplotypes are even more complex. It is striking that all KIR loci are subject to copy number variation (CNV), including the so-called framework genes, but CNV is much more frequent in KIR B haplotypes than KIR A haplotypes. These two basic KIR haplotype groups, A and B, appear to be following different evolutionary trajectories. Despite the great diversity, there are 11 common haplotypes, derived by reciprocal recombination near KIR2DL4, which collectively account for 94% of KIR haplotypes determined in Caucasian samples. These haplotypes could be derived from combinations of just three centromeic and two telomeric motifs, simplifying disease analysis for these haplotypes. The remaining 6% of haplotypes displayed novel examples of expansion and contraction of numbers of loci. Conventional KIR typing misses much of this additional complexity, with important implications for studying the genetics of disease association with KIR that can now be explored by CNV analysis.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          Analyzing real-time PCR data by the comparative C(T) method.

          Two different methods of presenting quantitative gene expression exist: absolute and relative quantification. Absolute quantification calculates the copy number of the gene usually by relating the PCR signal to a standard curve. Relative gene expression presents the data of the gene of interest relative to some calibrator or internal control gene. A widely used method to present relative gene expression is the comparative C(T) method also referred to as the 2 (-DeltaDeltaC(T)) method. This protocol provides an overview of the comparative C(T) method for quantitative gene expression studies. Also presented here are various examples to present quantitative gene expression data using this method.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            HLA and NK cell inhibitory receptor genes in resolving hepatitis C virus infection.

            Natural killer (NK) cells provide a central defense against viral infection by using inhibitory and activation receptors for major histocompatibility complex class I molecules as a means of controlling their activity. We show that genes encoding the inhibitory NK cell receptor KIR2DL3 and its human leukocyte antigen C group 1 (HLA-C1) ligand directly influence resolution of hepatitis C virus (HCV) infection. This effect was observed in Caucasians and African Americans with expected low infectious doses of HCV but not in those with high-dose exposure, in whom the innate immune response is likely overwhelmed. The data strongly suggest that inhibitory NK cell interactions are important in determining antiviral immunity and that diminished inhibitory responses confer protection against HCV.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Intensely punctate meiotic recombination in the class II region of the major histocompatibility complex.

              There is considerable interest in understanding patterns of linkage disequilibrium (LD) in the human genome, to aid investigations of human evolution and facilitate association studies in complex disease. The relative influences of meiotic crossover distribution and population history on LD remain unclear, however. In particular, it is uncertain to what extent crossovers are clustered into 'hot spots, that might influence LD patterns. As a first step to investigating the relationship between LD and recombination, we have analyzed a 216-kb segment of the class II region of the major histocompatibility complex (MHC) already characterized for familial crossovers. High-resolution LD analysis shows the existence of extended domains of strong association interrupted by patchwork areas of LD breakdown. Sperm typing shows that these areas correspond precisely to meiotic crossover hot spots. All six hot spots defined share a remarkably similar symmetrical morphology but vary considerably in intensity, and are not obviously associated with any primary DNA sequence determinants of hot-spot activity. These hot spots occur in clusters and together account for almost all crossovers in this region of the MHC. These data show that, within the MHC at least, crossovers are far from randomly distributed at the molecular level and that recombination hot spots can profoundly affect LD patterns.
                Bookmark

                Author and article information

                Journal
                Genome Res
                Genome Res
                GENOME
                Genome Research
                Cold Spring Harbor Laboratory Press
                1088-9051
                1549-5469
                October 2012
                October 2012
                : 22
                : 10
                : 1845-1854
                Affiliations
                [1 ]Division of Immunology, Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom;
                [2 ]Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, United Kingdom;
                [3 ]Children's Hospital Oakland Research Institute, Oakland, California 94609, USA;
                [4 ]National Heart and Lung Institute, Imperial College London, London SW3 6LY, United Kingdom
                Author notes
                [5]

                These authors contributed equally to this work.

                [6 ]Corresponding author E-mail jat51@ 123456cam.ac.uk
                Article
                9518021
                10.1101/gr.137976.112
                3460180
                22948769
                b132edaa-d1b1-44a5-9f45-912a30e37e6f
                © 2012, Published by Cold Spring Harbor Laboratory Press

                This article is distributed exclusively by Cold Spring Harbor Laboratory Press for the first six months after the full-issue publication date (see http://genome.cshlp.org/site/misc/terms.xhtml). After six months, it is available under a Creative Commons License (Attribution-NonCommercial 3.0 Unported License), as described at http://creativecommons.org/licenses/by-nc/3.0/.

                History
                : 23 January 2012
                : 22 May 2012
                Categories
                Research

                Comments

                Comment on this article