50
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Inferring regulatory mechanisms from patterns of evolutionary divergence

      editorial
      1 , a , 1
      Molecular Systems Biology
      Nature Publishing Group
      evolution, gene regulation, genomics

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Evolutionary conservation is widely used for assigning functions to proteins and genomic sequences. A complementary approach is discussed here whereby patterns of evolutionary divergence in regulatory programs provide novel insights into the mechanisms controlling gene expression.

          Abstract

          The number of sequenced species is increasing at a staggering rate, calling for new approaches for incorporating evolutionary information in the study of biological mechanisms. Evolutionary conservation is widely used for assigning a function to new proteins and for predicting functional coding or non-coding sequences. Here, we argue for a complementary approach that focuses on the divergence of regulatory programs. Regulatory mechanisms can be learned from patterns of evolutionary divergence in regulatory properties such as gene expression, transcription factor binding or nucleosome positioning. We review examples of this concept using yeast as a model system, and highlight a hybrid-based approach that is highly instrumental in this analysis.

          Related collections

          Most cited references88

          • Record: found
          • Abstract: found
          • Article: not found

          Systematic discovery of regulatory motifs in human promoters and 3' UTRs by comparison of several mammals.

          Comprehensive identification of all functional elements encoded in the human genome is a fundamental need in biomedical research. Here, we present a comparative analysis of the human, mouse, rat and dog genomes to create a systematic catalogue of common regulatory motifs in promoters and 3' untranslated regions (3' UTRs). The promoter analysis yields 174 candidate motifs, including most previously known transcription-factor binding sites and 105 new motifs. The 3'-UTR analysis yields 106 motifs likely to be involved in post-transcriptional regulation. Nearly one-half are associated with microRNAs (miRNAs), leading to the discovery of many new miRNA genes and their likely target genes. Our results suggest that previous estimates of the number of human miRNA genes were low, and that miRNAs regulate at least 20% of human genes. The overall results provide a systematic view of gene regulation in the human, which will be refined as additional mammalian genomes become available.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Sequencing and comparison of yeast species to identify genes and regulatory elements.

            Identifying the functional elements encoded in a genome is one of the principal challenges in modern biology. Comparative genomics should offer a powerful, general approach. Here, we present a comparative analysis of the yeast Saccharomyces cerevisiae based on high-quality draft sequences of three related species (S. paradoxus, S. mikatae and S. bayanus). We first aligned the genomes and characterized their evolution, defining the regions and mechanisms of change. We then developed methods for direct identification of genes and regulatory motifs. The gene analysis yielded a major revision to the yeast gene catalogue, affecting approximately 15% of all genes and reducing the total count by about 500 genes. The motif analysis automatically identified 72 genome-wide elements, including most known regulatory motifs and numerous new motifs. We inferred a putative function for most of these motifs, and provided insights into their combinatorial interactions. The results have implications for genome analysis of diverse organisms, including the human.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Single-cell proteomic analysis of S. cerevisiae reveals the architecture of biological noise.

              A major goal of biology is to provide a quantitative description of cellular behaviour. This task, however, has been hampered by the difficulty in measuring protein abundances and their variation. Here we present a strategy that pairs high-throughput flow cytometry and a library of GFP-tagged yeast strains to monitor rapidly and precisely protein levels at single-cell resolution. Bulk protein abundance measurements of >2,500 proteins in rich and minimal media provide a detailed view of the cellular response to these conditions, and capture many changes not observed by DNA microarray analyses. Our single-cell data argue that noise in protein expression is dominated by the stochastic production/destruction of messenger RNAs. Beyond this global trend, there are dramatic protein-specific differences in noise that are strongly correlated with a protein's mode of transcription and its function. For example, proteins that respond to environmental changes are noisy whereas those involved in protein synthesis are quiet. Thus, these studies reveal a remarkable structure to biological noise and suggest that protein noise levels have been selected to reflect the costs and potential benefits of this variation.
                Bookmark

                Author and article information

                Journal
                Mol Syst Biol
                Molecular Systems Biology
                Nature Publishing Group
                1744-4292
                2011
                13 September 2011
                13 September 2011
                : 7
                : 530
                Affiliations
                [1 ]simpleDepartment of Molecular Genetics, Weizmann Institute of Science , Rehovot, Israel
                Author notes
                [a ]Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel. Tel.: +972 8934 4429; Fax: +972 8934 4108; naama.barkai@ 123456weizmann.ac.il
                Article
                msb201160
                10.1038/msb.2011.60
                3202799
                21915117
                b144390d-09c7-451b-8851-818cf1197217
                Copyright © 2011, EMBO and Macmillan Publishers Limited

                This is an open-access article distributed under the terms of the Creative Commons Attribution Noncommercial Share Alike 3.0 Unported License, which allows readers to alter, transform, or build upon the article and then distribute the resulting work under the same or similar license to this one. The work must be attributed back to the original author and commercial use is not permitted without specific permission.

                History
                : 05 April 2011
                : 07 July 2011
                Categories
                Perspectives

                Quantitative & Systems biology
                evolution,genomics,gene regulation
                Quantitative & Systems biology
                evolution, genomics, gene regulation

                Comments

                Comment on this article