19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Quantitative Phase Imaging and Artificial Intelligence: A Review

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references119

          • Record: found
          • Abstract: found
          • Article: found

          Deep Learning in Medical Image Analysis

          This review covers computer-assisted analysis of images in the field of medical imaging. Recent advances in machine learning, especially with regard to deep learning, are helping to identify, classify, and quantify patterns in medical images. At the core of these advances is the ability to exploit hierarchical feature representations learned solely from data, instead of features designed by hand according to domain-specific knowledge. Deep learning is rapidly becoming the state of the art, leading to enhanced performance in various medical applications. We introduce the fundamentals of deep learning methods and review their successes in image registration, detection of anatomical and cellular structures, tissue segmentation, computer-aided disease diagnosis and prognosis, and so on. We conclude by discussing research issues and suggesting future directions for further improvement.
            Bookmark
            • Record: found
            • Abstract: not found
            • Conference Proceedings: not found

            Aggregated Residual Transformations for Deep Neural Networks

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              U-Net: Convolutional Networks for Biomedical Image Segmentation

              There is large consent that successful training of deep networks requires many thousand annotated training samples. In this paper, we present a network and training strategy that relies on the strong use of data augmentation to use the available annotated samples more efficiently. The architecture consists of a contracting path to capture context and a symmetric expanding path that enables precise localization. We show that such a network can be trained end-to-end from very few images and outperforms the prior best method (a sliding-window convolutional network) on the ISBI challenge for segmentation of neuronal structures in electron microscopic stacks. Using the same network trained on transmitted light microscopy images (phase contrast and DIC) we won the ISBI cell tracking challenge 2015 in these categories by a large margin. Moreover, the network is fast. Segmentation of a 512x512 image takes less than a second on a recent GPU. The full implementation (based on Caffe) and the trained networks are available at http://lmb.informatik.uni-freiburg.de/people/ronneber/u-net .
                Bookmark

                Author and article information

                Journal
                IEEE Journal of Selected Topics in Quantum Electronics
                IEEE J. Select. Topics Quantum Electron.
                Institute of Electrical and Electronics Engineers (IEEE)
                1077-260X
                1558-4542
                January 2019
                January 2019
                : 25
                : 1
                : 1-14
                Article
                10.1109/JSTQE.2018.2859234
                b14a18d5-742d-4fc3-be7c-2c3d671e59ee
                © 2019
                History

                Comments

                Comment on this article