4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Non-Coding RNAs as Blood-Based Biomarkers in Cardiovascular Disease

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In 2020, cardiovascular diseases (CVDs) remain a leading cause of mortality and morbidity, contributing to the burden of the already overloaded health system. Late or incorrect diagnosis of patients with CVDs compromises treatment efficiency and patient’s outcome. Diagnosis of CVDs could be facilitated by detection of blood-based biomarkers that reliably reflect the current condition of the heart. In the last decade, non-coding RNAs (ncRNAs) present on human biofluids including serum, plasma, and blood have been reported as potential biomarkers for CVDs. This paper reviews recent studies that focus on the use of ncRNAs as biomarkers of CVDs.

          Related collections

          Most cited references111

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation

          MicroRNAs (miRNAs) are a class of non-coding RNAs that play important roles in regulating gene expression. The majority of miRNAs are transcribed from DNA sequences into primary miRNAs and processed into precursor miRNAs, and finally mature miRNAs. In most cases, miRNAs interact with the 3′ untranslated region (3′ UTR) of target mRNAs to induce mRNA degradation and translational repression. However, interaction of miRNAs with other regions, including the 5′ UTR, coding sequence, and gene promoters, have also been reported. Under certain conditions, miRNAs can also activate translation or regulate transcription. The interaction of miRNAs with their target genes is dynamic and dependent on many factors, such as subcellular location of miRNAs, the abundancy of miRNAs and target mRNAs, and the affinity of miRNA-mRNA interactions. miRNAs can be secreted into extracellular fluids and transported to target cells via vesicles, such as exosomes, or by binding to proteins, including Argonautes. Extracellular miRNAs function as chemical messengers to mediate cell-cell communication. In this review, we provide an update on canonical and non-canonical miRNA biogenesis pathways and various mechanisms underlying miRNA-mediated gene regulations. We also summarize the current knowledge of the dynamics of miRNA action and of the secretion, transfer, and uptake of extracellular miRNAs.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Landscape of transcription in human cells

              Summary Eukaryotic cells make many types of primary and processed RNAs that are found either in specific sub-cellular compartments or throughout the cells. A complete catalogue of these RNAs is not yet available and their characteristic sub-cellular localizations are also poorly understood. Since RNA represents the direct output of the genetic information encoded by genomes and a significant proportion of a cell’s regulatory capabilities are focused on its synthesis, processing, transport, modifications and translation, the generation of such a catalogue is crucial for understanding genome function. Here we report evidence that three quarters of the human genome is capable of being transcribed, as well as observations about the range and levels of expression, localization, processing fates, regulatory regions and modifications of almost all currently annotated and thousands of previously unannotated RNAs. These observations taken together prompt to a redefinition of the concept of a gene.
                Bookmark

                Author and article information

                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                05 December 2020
                December 2020
                : 21
                : 23
                : 9285
                Affiliations
                [1 ]CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands; r.figuinhavideira@ 123456maastrichtuniversity.nl (R.F.V.); p.dacostamartins@ 123456maastrichtuniversity.nl (P.A.d.C.M.)
                [2 ]Department of Molecular Genetics, Faculty of Science and Engineering, Maastricht University, 6229 ER Maastricht, The Netherlands
                [3 ]Cardiovascular Research and Development Center, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
                Author notes
                [* ]Correspondence: ipires@ 123456med.up.pt
                Article
                ijms-21-09285
                10.3390/ijms21239285
                7730567
                33291434
                b14adff0-6c1c-4a68-8992-193013daa30a
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 14 October 2020
                : 30 November 2020
                Categories
                Review

                Molecular biology
                ncrnas,biomarkers,cardiovascular diseases,diagnosis
                Molecular biology
                ncrnas, biomarkers, cardiovascular diseases, diagnosis

                Comments

                Comment on this article