77
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Gene Deletion of the Kinin Receptor B1 Attenuates Cardiac Inflammation and Fibrosis During the Development of Experimental Diabetic Cardiomyopathy

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          OBJECTIVE

          Diabetic cardiomyopathy is associated with increased mortality in patients with diabetes. The underlying pathology of this disease is still under discussion. We studied the role of the kinin B1 receptor on the development of experimental diabetic cardiomyopathy.

          RESEARCH DESIGN AND METHODS

          We utilized B1 receptor knockout mice and investigated cardiac inflammation, fibrosis, and oxidative stress after induction of streptozotocin (STZ)-induced diabetes. Furthermore, the left ventricular function was measured by pressure-volume loops after 8 weeks of diabetes.

          RESULTS

          B1 receptor knockout mice showed an attenuation of diabetic cardiomyopathy with improved systolic and diastolic function in comparison with diabetic control mice. This was associated with a decreased activation state of the mitogen-activated protein kinase p38, less oxidative stress, as well as normalized cardiac inflammation, shown by fewer invading cells and no increase in matrix metalloproteinase-9 as well as the chemokine CXCL-5. Furthermore, the profibrotic connective tissue growth factor was normalized, leading to a reduction in cardiac fibrosis despite severe hyperglycemia in mice lacking the B1 receptor.

          CONCLUSIONS

          These findings suggest that the B1 receptor is detrimental in diabetic cardiomyopathy in that it mediates inflammatory and fibrotic processes. These insights might have useful implications on future studies utilizing B1 receptor antagonists for treatment of human diabetic cardiomyopathy.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: not found

          Interleukin-6 and Diabetes: The Good, the Bad, or the Indifferent?

          Inflammatory mechanisms play a key role in the pathogenesis of type 1 diabetes. Individuals who progress to type 2 diabetes display features of low-grade inflammation years in advance of disease onset. This low-grade inflammation has been proposed to be involved in the pathogenetic processes causing type 2 diabetes. Mediators of inflammation such as tumor necrosis factor-alpha, interleukin (IL)-1beta, the IL-6 family of cytokines, IL-18, and certain chemokines have been proposed to be involved in the events causing both forms of diabetes. IL-6 has in addition to its immunoregulatory actions been proposed to affect glucose homeostasis and metabolism directly and indirectly by action on skeletal muscle cells, adipocytes, hepatocytes, pancreatic beta-cells, and neuroendocrine cells. Here we argue that IL-6 action-in part regulated by variance in the IL-6 and IL-6alpha receptor genes-contributes to, but is probably neither necessary nor sufficient for, the development of both type 1 and type 2 diabetes. Thus, the two types of diabetes are also in this respect less apart than apparent. However, the mechanisms are not clear, and we therefore propose future directions for studies in this field.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Diabetic cardiomyopathy: the search for a unifying hypothesis.

            Although diabetes is recognized as a potent and prevalent risk factor for ischemic heart disease, less is known as to whether diabetes causes an altered cardiac phenotype independent of coronary atherosclerosis. Left ventricular systolic and diastolic dysfunction, left ventricular hypertrophy, and alterations in the coronary microcirculation have all been observed, although not consistently, in diabetic cardiomyopathy and are not fully explained by the cellular effects of hyperglycemia alone. The recent recognition that diabetes involves more than abnormal glucose homeostasis provides important new opportunities to examine and understand the impact of complex metabolic disturbances on cardiac structure and function.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Role of left ventricular stiffness in heart failure with normal ejection fraction.

              Increased left ventricular stiffness is a distinct finding in patients who have heart failure with normal ejection fraction (HFNEF). To elucidate how diastolic dysfunction contributes to heart failure symptomatology during exercise, we conducted a study using an invasive pressure-volume loop approach and measured cardiac function at rest and during atrial pacing and handgrip exercise. Patients with HFNEF (n=70) and patients without heart failure symptoms (n=20) were enrolled. Pressure-volume loops were measured with a conductance catheter during basal conditions, handgrip exercise, and atrial pacing with 120 bpm to analyze diastolic and systolic left ventricular function. During transient preload reduction, the diastolic stiffness constant was measured directly. Diastolic function with increased stiffness was significantly impaired in patients with HFNEF during basal conditions. This was associated with increased end-diastolic pressures during handgrip exercise and with decreased stroke volume and a leftward shift of pressure-volume loops during atrial pacing. Increased left ventricular stiffness contributed to increased end-diastolic pressure during handgrip exercise and decreased stroke volume during atrial pacing in patients with HFNEF. These data suggest that left ventricular stiffness modulates cardiac function in HFNEF patients and suggests that diastolic dysfunction with increased stiffness is a target for treating HFNEF.
                Bookmark

                Author and article information

                Journal
                Diabetes
                diabetes
                diabetes
                Diabetes
                Diabetes
                American Diabetes Association
                0012-1797
                1939-327X
                June 2009
                10 March 2009
                : 58
                : 6
                : 1373-1381
                Affiliations
                [1] 1Department of Cardiology and Pneumology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany;
                [2] 2Max-Delbrück Center for Molecular Medicine, Berlin-Buch, Germany.
                Author notes
                Corresponding author: Carsten Tschöpe, carsten.tschoepe@ 123456charite.de .
                Article
                0329
                10.2337/db08-0329
                2682670
                19276445
                b14cd44b-0f8c-43bc-a939-b56187c20c48
                © 2009 by the American Diabetes Association.

                Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. See http://creativecommons.org/licenses/by-nc-nd/3.0/ for details.

                History
                : 7 March 2008
                : 2 March 2009
                Categories
                Original Article
                Complications

                Endocrinology & Diabetes
                Endocrinology & Diabetes

                Comments

                Comment on this article