Blog
About

5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Histoautoradiographic detection of oxytocin- and vasopressin-binding sites in the telencephalon of the rat : OT AND VP RECEPTORS IN THE RAT TELENCEPHALON

      , ,

      Journal of Comparative Neurology

      Wiley

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references 36

          • Record: found
          • Abstract: found
          • Article: not found

          An autoradiographic study of the organization of the efferent connections of the hippocampal formation in the rat.

          The efferent connections of the hippocampal formation of the rat have been re-examined autoradiographically following the injection of small quantities of 3H-amino acids (usually 3H-proline) into different parts of Ammon's horn and the adjoining structures. The findings indicate quite clearly that each component of the hippocampal formation has a distinctive pattern of efferent connections and that each component of the fornix system arises from a specific subdivision of the hippocampus or the adjoining cortical fields. Thus, the precommissural fornix has been found to originate solely in fields CA1-3 of the hippocampus proper and from the subiculum; the projection to the anterior nuclear complex of the thalamus arises more posteriorly in the pre- and/or parasubiculum and the postsubicular area; the projection to the mammillary complex which comprises a major part of the descending columns of the fornix has its origin in the dorsal subiculum and the pre- and/or parasubiculum; and finally, the medial cortico-hypothalamic tract arises from the ventral subiculum. The lateral septal nuclei (and the adjoining parts of the posterior septal complex) constitute the only subcortical projection field of the pyramidal cells in fields CA1-3 of Ammon's horn. There is a rostral extension of the pre-commissural fornix to the bed nucleus of the stria terminalis, the nucleus accumbens, the medial and posterior parts of the anterior olfactory nucleus, the taenia tecta, and the infralimbic area, which appears to arise from the temporal part of field CA1 or the adjacent part of the ventral subiculum. The projection of Ammon's horn upon the lateral septal complex shows a high degree of topographic organization (such that different parts of fields CA1 and CA3 project in an ordered manner to different zones within the lateral septal nucleus). The septal projection of "CA2" and field CA3 is bilateral, while that of field CA1 is strictly unilateral. In addition to its subcortical projections, the hippocampus has been found to give rise to a surprisingly extensive series of intracortical association connections. For example, all parts of fields CA1, CA2 and CA3 project to the subiculum, and at least some parts of these fields send fibers to the pre- and parasubiculum, and to the entorhinal perirhinal, retrosplenial and cingulate areas. From the region of the pre- and parasubiculum there is a projection to the entorhinal cortex and the parasubiculum of both sides. That part of the postsubiculum (= dorsal part of the presubiculum) which we have examined has been found to project to the cingulate and retrosplenial areas ipsilaterally, and to the entorhinal cortex and parasubiculum bilaterally.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            New perspectives in basal forebrain organization of special relevance for neuropsychiatric disorders: the striatopallidal, amygdaloid, and corticopetal components of substantia innominata.

             G.F Alheid,  L Heimer (1988)
            The basal forebrain is critically involved in functions representing the highest levels of integration. Only recently has a relatively clear anatomical picture of this important area begun to emerge. The territory that has generally been referred to as the "substantia innominata" appears to be composed of portions of three recognizable forebrain structures: the ventral striatopallidal system, the extended amygdala and the magnocellular corticopetal system. (1) Rostrally, the striatopallidal system reaches ventrally to the base of the brain. (2) Caudal to the ventral extension of the striatopallidal system elements of the centromedial amygdala and bed nucleus of the stria terminalis are merged so that these two areas together with this subpallidal corridor form a large forebrain unit that might be described as an "extended amygdala". (3) Large cholinergic and non-cholinergic corticopetal neurons form a more or less continuous aggregate that is interwoven with the striatopallidal and extended amygdala systems in basal forebrain. Consideration of morphological and connectional characteristics of basal forebrain suggests that the corticopetal cell groups, together with magnocellular elements of the striatum, serve similar functional roles for the striatopallidal system, the extended amygdala, and the septal-diagonal band complex. Specifically, the output of medium spiny neurons in striatum, extended amygdala, and lateral septum are directed toward somewhat larger sparsely or moderately spiny neurons with radiating dendrites which in turn project to diencephalon and brainstem or provide either local feedback (e.g. in striatum) or distal feedback to cortex. The functional implications of this parallel processing of descending forebrain afferents are discussed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cholecystokinin innervation of the ventral striatum: a morphological and radioimmunological study.

              Immunocytochemistry, radioimmunological assay after surgical cuts, anterograde degeneration and retrograde tracing of fluorescent dyes were used in order to elucidate the cholecystokinin-containing afferents to the ventral striatum (nucleus accumbens, olfactory tubercle and ventral part of the caudate-putamen). In agreement with the report by Hökfelt et al., midbrain cholecystokinin-containing cells supply the posteromedial parts of the nucleus accumbens and olfactory tubercle, as well as the subcommissural part of caudate-putamen. Brainstem cholecystokinin afferents also reach more rostral parts of the ventral striatum including the rostrolateral olfactory tubercle. The ascending cholecystokinin axons enter the medial forebrain bundle at the meso-diencephalic border and maintain a rough medial to lateral topography at the caudal diencephalon. A second major cholecystokinin pathway, with possible origin in the piriform and medial prefrontal cortices and/or the amygdala, projects to the subcommissural caudate-putamen, the olfactory tubercle, the lateral part of the nucleus accumbens and the dorsal part of the bed nucleus of stria terminalis. Finally, the rostral part of the dorsal caudate-putamen receives a substantial cholecystokinin innervation from the basolateral amygdala and possibly from the neocortex. According to radioimmunological data, the descending telencephalic cholecystokinin system accounts for about 60% of all cholecystokinin in the rostral forebrain. The combined use of morphological and biochemical methods provided evidence for a partially overlapping distribution and possible interaction between an ascending brainstem and descending telencephalic cholecystokinin fiber systems within the striatum and related rostral forebrain areas.
                Bookmark

                Author and article information

                Journal
                Journal of Comparative Neurology
                J. Comp. Neurol.
                Wiley
                00219967
                July 15 1993
                July 15 1993
                October 09 2004
                : 333
                : 3
                : 343-359
                Article
                10.1002/cne.903330304
                © 2004

                http://doi.wiley.com/10.1002/tdm_license_1.1

                Comments

                Comment on this article