4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Melatonin prevents deterioration in quality by preserving epigenetic modifications of porcine oocytes after prolonged culture

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Prolonged culture of metaphase II oocytes is an in vitro aging process that compromises oocyte quality. We tested whether melatonin preserves epigenetic modifications in oocytes after prolonged culture. The porcine oocytes were maturated in vitro for 44 h, and then metaphase II oocytes were continuously cultured in medium supplemented with or without melatonin for 24 h. We found that the parthenogenetic blastocyst formation rate of prolonged-culture oocytes was lower than in fresh oocytes. We further observed that methylation at H3K4me2 and H3K27me2 of oocytes enhanced after prolonged culture. However, 5mc fluorescence intensity was lower in prolonged-culture oocytes than in fresh oocytes. Moreover, the promoter of the imprinted gene NNAT exhibited a higher level of DNA methylation in prolonged-culture oocytes than in fresh oocytes, which was associated with a reduced expression level and glucose uptake capability. Conversely, melatonin improved blastocyst formation rate and preserved histone and DNA methylation modifications, as well as NNAT function in the oocytes after prolonged culture. Notably, DNA methyltransferase inhibitor 5-aza significantly attenuated the protective role of melatonin on genomic DNA methylation. In summary, our results revealed that epigenetic modifications are disrupted in oocytes after prolonged culture, but the changes are reversed by melatonin.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          Distinct features of H3K4me3 and H3K27me3 chromatin domains in pre-implantation embryos.

          Histone modifications have critical roles in regulating the expression of developmental genes during embryo development in mammals. However, genome-wide analyses of histone modifications in pre-implantation embryos have been impeded by the scarcity of the required materials. Here, by using a small-scale chromatin immunoprecipitation followed by sequencing (ChIP-seq) method, we map the genome-wide profiles of histone H3 lysine 4 trimethylation (H3K4me3) and histone H3 lysine 27 trimethylation (H3K27me3), which are associated with gene activation and repression, respectively, in mouse pre-implantation embryos. We find that the re-establishment of H3K4me3, especially on promoter regions, occurs much more rapidly than that of H3K27me3 following fertilization, which is consistent with the major wave of zygotic genome activation at the two-cell stage. Furthermore, H3K4me3 and H3K27me3 possess distinct features of sequence preference and dynamics in pre-implantation embryos. Although H3K4me3 modifications occur consistently at transcription start sites, the breadth of the H3K4me3 domain is a highly dynamic feature. Notably, the broad H3K4me3 domain (wider than 5 kb) is associated with higher transcription activity and cell identity not only in pre-implantation development but also in the process of deriving embryonic stem cells from the inner cell mass and trophoblast stem cells from the trophectoderm. Compared to embryonic stem cells, we found that the bivalency (that is, co-occurrence of H3K4me3 and H3K27me3) in early embryos is relatively infrequent and unstable. Taken together, our results provide a genome-wide map of H3K4me3 and H3K27me3 modifications in pre-implantation embryos, facilitating further exploration of the mechanism for epigenetic regulation in early embryos.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A survey of molecular details in the human pineal gland in the light of phylogeny, structure, function and chronobiological diseases.

            The human pineal gland is a neuroendocrine transducer that forms an integral part of the brain. Through the nocturnally elevated synthesis and release of the neurohormone melatonin, the pineal gland encodes and disseminates information on circadian time, thus coupling the outside world to the biochemical and physiological internal demands of the body. Approaches to better understand molecular details behind the rhythmic signalling in the human pineal gland are limited but implicitly warranted, as human chronobiological dysfunctions are often associated with alterations in melatonin synthesis. Current knowledge on melatonin synthesis in the human pineal gland is based on minimally invasive analyses, and by the comparison of signalling events between different vertebrate species, with emphasis put on data acquired in sheep and other primates. Together with investigations using autoptic pineal tissue, a remnant silhouette of premortem dynamics within the hormone's biosynthesis pathway can be constructed. The detected biochemical scenario behind the generation of dynamics in melatonin synthesis positions the human pineal gland surprisingly isolated. In this neuroendocrine brain structure, protein-protein interactions and nucleo-cytoplasmic protein shuttling indicate furthermore a novel twist in the molecular dynamics in the cells of this neuroendocrine brain structure. These findings have to be seen in the light that an impaired melatonin synthesis is observed in elderly and/or demented patients, in individuals affected by Alzheimer's disease, Smith-Magenis syndrome, autism spectrum disorder and sleep phase disorders. Already, recent advances in understanding signalling dynamics in the human pineal gland have significantly helped to counteract chronobiological dysfunctions through a proper restoration of the nocturnal melatonin surge. © 2011 John Wiley & Sons A/S.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Oxidative stress and ageing of the post-ovulatory oocyte.

              With extended periods of time following ovulation, the metaphase II stage oocyte experiences deterioration in quality referred to as post-ovulatory oocyte ageing. Post-ovulatory ageing occurs both in vivo and in vitro and has been associated with reduced fertilization rates, poor embryo quality, post-implantation errors and abnormalities in the offspring. Although the physiological consequences of post-ovulatory oocyte ageing have largely been established, the molecular mechanisms controlling this process are not well defined. This review analyses the relationships between biochemical changes exhibited by the ageing oocyte and the symptoms associated with the ageing phenotype. We also discuss molecular events that are potentially involved in orchestrating post-ovulatory ageing with a particular focus on the role of oxidative stress. We propose that oxidative stress may act as the initiator for a cascade of events that create the aged oocyte phenotype. Specifically, oxidative stress has the capacity to cause a decline in levels of critical cell cycle factors such as maturation-promoting factor, impair calcium homoeostasis, induce mitochondrial dysfunction and directly damage multiple intracellular components of the oocyte such as lipids, proteins and DNA. Finally, this review addresses current strategies for delaying post-ovulatory oocyte ageing with a particular focus on the potential use of compounds such as caffeine or selected antioxidants in the development of more refined media for the preservation of oocyte integrity during IVF procedures.
                Bookmark

                Author and article information

                Journal
                Aging (Albany NY)
                Aging (Albany NY)
                Aging
                Aging (Albany NY)
                Impact Journals
                1945-4589
                December 2018
                10 December 2018
                : 10
                : 12
                : 3897-3909
                Affiliations
                [1 ]State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi 530004, PR China,
                [2 ]College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, PR China,
                Author notes
                Correspondence to: Shengsheng Lu; email: shengshenglu@ 123456qq.com
                Correspondence to: Xingwei Liang; email: xwliang@ 123456gxu.edu.cn
                Article
                101680
                10.18632/aging.101680
                6326688
                30530915
                b1573c24-b7bd-4f3a-91c2-f86ec901e667
                Copyright © 2018 Nie et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution (CC BY) 3.0 License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 06 September 2018
                : 19 November 2018
                Categories
                Research Paper

                Cell biology
                oocyte,prolonged-culture,dna methylation,histone methylation,melatonin
                Cell biology
                oocyte, prolonged-culture, dna methylation, histone methylation, melatonin

                Comments

                Comment on this article