9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Preparation of alginate–chitosan–cyclodextrin micro- and nanoparticles loaded with anti-tuberculosis compounds

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Summary

          This paper describes the synthesis and application of alginate–chitosan–cyclodextrin micro- and nanoparticulate systems loaded with isoniazid (INH) and isoconazole nitrate (ISN) as antimycobacterial compounds. Preparation and morphology of the obtained particles, as well as antimycobacterial activity data of the obtained systems are presented. Docking of isoconazole into the active site of enoyl–acyl carrier protein reductase (InhA) of Mycobacetrium tuberculosis was carried out in order to predict the binding affinity and non-covalent interactions stabilizing the InhA–isoconazole complex. To assess these interactions, frontier molecular orbital calculations were performed for the active site of InhA and isoconazole obtained from docking. Isoconazole was predicted to be an active inhibitor of InhA with the analysis of the molecular docking and electron density distribution. It has been detected that alginate–chitosan–cyclodextrin microparticulate systems loaded with INH and ISN are as effective as pure INH applied in higher dosages.

          Abstract

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          Microplate alamar blue assay versus BACTEC 460 system for high-throughput screening of compounds against Mycobacterium tuberculosis and Mycobacterium avium.

          In response to the need for rapid, inexpensive, high-throughput assays for antimycobacterial drug screening, a microplate-based assay which uses Alamar blue reagent for determination of growth was evaluated. MICs of 30 antimicrobial agents against Mycobacterium tuberculosis H37Rv, M. tuberculosis H37Ra, and Mycobacterium avium were determined in the microplate Alamar blue assay (MABA) with both visual and fluorometric readings and compared to MICs determined in the BACTEC 460 system. For all three mycobacterial strains, there was < or = 1 dilution difference between MABA and BACTEC median MICs in four replicate experiments for 25 to 27 of the 30 antimicrobics. Significant differences between MABA and BACTEC MICs were observed with 0, 2, and 5 of 30 antimicrobial agents against H37Rv, H37Ra, and M. avium, respectively. Overall, MICs determined either visually or fluorometrically in MABA were highly correlated with those determined in the BACTEC 460 system, and visual MABA and fluorometric MABA MICs were highly correlated. MICs of rifampin, rifabutin, minocycline, and clarithromycin were consistently lower for H37Ra compared to H37Rv in all assays but were similar for most other drugs. M. tuberculosis H37Ra may be a suitable surrogate for the more virulent H37Rv strain in primary screening of compounds for antituberculosis activity. MABA is sensitive, rapid, inexpensive, and nonradiometric and offers the potential for screening, with or without analytical instrumentation, large numbers of antimicrobial compounds against slow-growing mycobacteria.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Nanoparticles for drug delivery to the lungs.

            The lungs are an attractive route for non-invasive drug delivery with advantages for both systemic and local applications. Incorporating therapeutics with polymeric nanoparticles offers additional degrees of manipulation for delivery systems, providing sustained release and the ability to target specific cells and organs. However, nanoparticle delivery to the lungs has many challenges including formulation instability due to particle-particle interactions and poor delivery efficiency due to exhalation of low-inertia nanoparticles. Thus, novel methods formulating nanoparticles into the form of micron-scale dry powders have been developed. These carrier particles exhibit improved handling and delivery, while releasing nanoparticles upon deposition in the lungs. This review covers the development of nanoparticle formulations for pulmonary delivery as both individual nanoparticles and encapsulated within carrier particles.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The potential advantages of nanoparticle drug delivery systems in chemotherapy of tuberculosis.

              Nanoparticle-based drug delivery systems have considerable potential for treatment of tuberculosis (TB). The important technological advantages of nanoparticles used as drug carriers are high stability, high carrier capacity, feasibility of incorporation of both hydrophilic and hydrophobic substances, and feasibility of variable routes of administration, including oral application and inhalation. Nanoparticles can also be designed to allow controlled (sustained) drug release from the matrix. These properties of nanoparticles enable improvement of drug bioavailability and reduction of the dosing frequency, and may resolve the problem of nonadherence to prescribed therapy, which is one of the major obstacles in the control of TB epidemics. This article highlights some of the issues of nanotechnology relevant to the anti-TB drugs.
                Bookmark

                Author and article information

                Contributors
                Role: Guest Editor
                Journal
                Beilstein J Nanotechnol
                Beilstein J Nanotechnol
                Beilstein Journal of Nanotechnology
                Beilstein-Institut (Trakehner Str. 7-9, 60487 Frankfurt am Main, Germany )
                2190-4286
                2016
                24 August 2016
                : 7
                : 1208-1218
                Affiliations
                [1 ]Laboratory of Organic Synthesis and Biopharmaceutics, Institute of Chemistry of ASM, Academiei 3, MD-2028 Chisinau, Moldova
                [2 ]Department of Chemistry, Faculty of Science, Gebze Technical University, Kocaeli, 41400, Turkey
                Article
                10.3762/bjnano.7.112
                5082317
                27826495
                b161d7e1-e888-4023-a97c-c04fafe19c33
                Copyright © 2016, Ivancic et al.; licensee Beilstein-Institut.

                This is an Open Access article under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                The license is subject to the Beilstein Journal of Nanotechnology terms and conditions: ( http://www.beilstein-journals.org/bjnano)

                History
                : 8 June 2016
                : 4 August 2016
                Categories
                Full Research Paper
                Nanoscience
                Nanotechnology

                chitosan,β-cyclodextrin,density functional theory (dft),isoconazole,isoniazid,molecular docking,quaternary system,sodium alginate

                Comments

                Comment on this article