14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Prediction of clinical toxicity in localized cervical carcinoma by radio-induced apoptosis study in peripheral blood lymphocytes (PBLs)

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Cervical cancer is treated mainly by surgery and radiotherapy. Toxicity due to radiation is a limiting factor for treatment success. Determination of lymphocyte radiosensitivity by radio-induced apoptosis arises as a possible method for predictive test development. The aim of this study was to analyze radio-induced apoptosis of peripheral blood lymphocytes.

          Methods

          Ninety four consecutive patients suffering from cervical carcinoma, diagnosed and treated in our institution, and four healthy controls were included in the study. Toxicity was evaluated using the Lent-Soma scale. Peripheral blood lymphocytes were isolated and irradiated at 0, 1, 2 and 8 Gy during 24, 48 and 72 hours. Apoptosis was measured by flow cytometry using annexin V/propidium iodide to determine early and late apoptosis. Lymphocytes were marked with CD45 APC-conjugated monoclonal antibody.

          Results

          Radiation-induced apoptosis (RIA) increased with radiation dose and time of incubation. Data strongly fitted to a semi logarithmic model as follows: RIA = βln(Gy) + α. This mathematical model was defined by two constants: α, is the origin of the curve in the Y axis and determines the percentage of spontaneous cell death and β, is the slope of the curve and determines the percentage of cell death induced at a determined radiation dose (β = ΔRIA/Δln(Gy)). Higher β values (increased rate of RIA at given radiation doses) were observed in patients with low sexual toxicity (Exp(B) = 0.83, C.I. 95% (0.73-0.95), p = 0.007; Exp(B) = 0.88, C.I. 95% (0.82-0.94), p = 0.001; Exp(B) = 0.93, C.I. 95% (0.88-0.99), p = 0.026 for 24, 48 and 72 hours respectively). This relation was also found with rectal (Exp(B) = 0.89, C.I. 95% (0.81-0.98), p = 0.026; Exp(B) = 0.95, C.I. 95% (0.91-0.98), p = 0.013 for 48 and 72 hours respectively) and urinary (Exp(B) = 0.83, C.I. 95% (0.71-0.97), p = 0.021 for 24 hours) toxicity.

          Conclusion

          Radiation induced apoptosis at different time points and radiation doses fitted to a semi logarithmic model defined by a mathematical equation that gives an individual value of radiosensitivity and could predict late toxicity due to radiotherapy. Other prospective studies with higher number of patients are needed to validate these results.

          Related collections

          Most cited references20

          • Record: found
          • Abstract: found
          • Article: not found

          Timescale of evolution of late radiation injury after postoperative radiotherapy of breast cancer patients.

          To evaluate the incidence and prevalence of various signs of late morbidity, their time of appearance and pattern of progression during an observation period up to 34 years in breast cancer patients treated with postoperative radiation therapy after radical mastectomy. A group of 71 breast cancer patients received in 1963-1965 aggressive postoperative telecobalt therapy to the parasternal, axillary, and supraclavicular lymph node regions after total mastectomy and axillary clearance. None of the patients received chemotherapy either prior to, or after the irradiation as part of their primary treatment. The prescribed dose to the three lymph node regions was 44 Gy in 11 fractions. Only two of the three fields were treated per day. This total dose was given in 16-17 fractions over 3-4 weeks. Because of the overlap of the supraclavicular and axillary fields, the dose received by the brachial plexus was not the dose that was prescribed. A retrospective dose calculation showed that the total dose to the brachial plexus was 57 Gy, delivered as a complex combination of 1.8 Gy, 3.4 Gy, and 5.2 Gy fractions. This cohort of patients has now been followed to 34 years and the late side effects of the treatment evaluated and scored. This series is unique in the literature. There is no comparable report of a detailed long-term follow-up in a homogeneously treated group of patients with such a high survival, especially among the younger women, where it is almost 50% at 30 years. This is the reason that they were able to develop some of the very slowly evolving injuries. There was progression of many of the late effects in the period between 5 and 34 years. The more serious morbidities have increased progressively over the whole 34-year follow-up period. Ninety-two percent of the long-term survivors have paralysis of their arm. Other neurological findings included unilateral vocal cord paralysis among 5% of the patients, who developed the disease after a median time of 19 years. All of them were left-sided, indicating a mediastinal involvement of the recurrent nerve. Local recurrence or the appearance of a new primary tumor infiltrating or causing pressure on the recurrent nerve were vigorously investigated and excluded as possible causes of these symptoms. The greatest risk for all cancer patients is the inadequate treatment of their disease, because this is inevitably lethal. The aggressiveness of the therapy and the acceptable risk of complications must therefore be balanced against the risk of recurrence. The neuropathy seems to be closely linked to the development of fibrosis around the nerve trunks. The use of large daily fractions, combined with hot spots from overlapping fields contributed to the severity of the complications.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Single nucleotide polymorphisms, apoptosis, and the development of severe late adverse effects after radiotherapy.

            Evidence has accumulated in recent years suggestive of a genetic basis for a susceptibility to the development of radiation injury after cancer radiotherapy. The purpose of this study was to assess whether patients with severe radiation-induced sequelae (RIS; i.e., National Cancer Institute/CTCv3.0 grade, > or =3) display both a low capacity of radiation-induced CD8 lymphocyte apoptosis (RILA) in vitro and possess certain single nucleotide polymorphisms (SNP) located in candidate genes associated with the response of cells to radiation. DNA was isolated from blood samples obtained from patients (n = 399) included in the Swiss prospective study evaluating the predictive effect of in vitro RILA and RIS. SNPs in the ATM, SOD2, XRCC1, XRCC3, TGFB1, and RAD21 genes were screened in patients who experienced severe RIS (group A, n = 16) and control subjects who did not manifest any evidence of RIS (group B, n = 18). Overall, 13 and 21 patients were found to possess a total of or =4 SNPs in the candidate genes. The median (range) RILA in group A was 9.4% (5.3-16.5) and 94% (95% confidence interval, 70-100) of the patients (15 of 16) had > or =4 SNPs. In group B, median (range) RILA was 25.7% (20.2-43.2) and 33% (95% confidence interval, 13-59) of patients (6 of 18) had > or =4 SNPs (P < 0.001). The results of this study suggest that patients with severe RIS possess 4 or more SNPs in candidate genes and low radiation-induced CD8 lymphocyte apoptosis in vitro.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              EORTC Late Effects Working Group. Late Effects toxicity scoring: the SOMA scale.

                Bookmark

                Author and article information

                Journal
                Radiat Oncol
                Radiation Oncology (London, England)
                BioMed Central
                1748-717X
                2009
                26 November 2009
                : 4
                : 58
                Affiliations
                [1 ]Canary Institute for Cancer Research (ICIC), Las Palmas, Spain
                [2 ]Clinic Sciences Department of Las Palmas de Gran Canaria University (ULPGC), Las Palmas, Spain
                [3 ]Radiation Oncology Department, Hospital Universitario de Gran Canaria Dr. Negrín, Las Palmas, Spain
                [4 ]Inmunology Department, Hospital Universitario de Gran Canaria Dr. Negrín, Las Palmas, Spain
                Article
                1748-717X-4-58
                10.1186/1748-717X-4-58
                2787528
                19941649
                b16cb0ab-b12f-4110-b087-cb802bd661d6
                Copyright ©2009 Bordón et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 20 August 2009
                : 26 November 2009
                Categories
                Research

                Oncology & Radiotherapy
                Oncology & Radiotherapy

                Comments

                Comment on this article