+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Up-to-date catalogues of yeast protein complexes

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Gold standard datasets on protein complexes are key to inferring and validating protein–protein interactions. Despite much progress in characterizing protein complexes in the yeast Saccharomyces cerevisiae, numerous researchers still use as reference the manually curated complexes catalogued by the Munich Information Center of Protein Sequences database. Although this catalogue has served the community extremely well, it no longer reflects the current state of knowledge. Here, we report two catalogues of yeast protein complexes as results of systematic curation efforts. The first one, denoted as CYC2008, is a comprehensive catalogue of 408 manually curated heteromeric protein complexes reliably backed by small-scale experiments reported in the current literature. This catalogue represents an up-to-date reference set for biologists interested in discovering protein interactions and protein complexes. The second catalogue, denoted as YHTP2008, comprises 400 high-throughput complexes annotated with current literature evidence. Among them, 262 correspond, at least partially, to CYC2008 complexes. Evidence for interacting subunits is collected for 68 complexes that have only partial or no overlap with CYC2008 complexes, whereas no literature evidence was found for 100 complexes. Some of these partially supported and as yet unsupported complexes may be interesting candidates for experimental follow up. Both catalogues are freely available at: http://wodaklab.org/cyc2008/.

          Related collections

          Most cited references 15

          • Record: found
          • Abstract: not found
          • Article: not found

          Gene ontology: tool for the unification of biology. The Gene Ontology Consortium.

            • Record: found
            • Abstract: found
            • Article: not found

            A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae.

            Two large-scale yeast two-hybrid screens were undertaken to identify protein-protein interactions between full-length open reading frames predicted from the Saccharomyces cerevisiae genome sequence. In one approach, we constructed a protein array of about 6,000 yeast transformants, with each transformant expressing one of the open reading frames as a fusion to an activation domain. This array was screened by a simple and automated procedure for 192 yeast proteins, with positive responses identified by their positions in the array. In a second approach, we pooled cells expressing one of about 6,000 activation domain fusions to generate a library. We used a high-throughput screening procedure to screen nearly all of the 6,000 predicted yeast proteins, expressed as Gal4 DNA-binding domain fusion proteins, against the library, and characterized positives by sequence analysis. These approaches resulted in the detection of 957 putative interactions involving 1,004 S. cerevisiae proteins. These data reveal interactions that place functionally unclassified proteins in a biological context, interactions between proteins involved in the same biological function, and interactions that link biological functions together into larger cellular processes. The results of these screens are shown here.
              • Record: found
              • Abstract: found
              • Article: not found

              A comprehensive two-hybrid analysis to explore the yeast protein interactome.

              Protein-protein interactions play crucial roles in the execution of various biological functions. Accordingly, their comprehensive description would contribute considerably to the functional interpretation of fully sequenced genomes, which are flooded with novel genes of unpredictable functions. We previously developed a system to examine two-hybrid interactions in all possible combinations between the approximately 6,000 proteins of the budding yeast Saccharomyces cerevisiae. Here we have completed the comprehensive analysis using this system to identify 4,549 two-hybrid interactions among 3,278 proteins. Unexpectedly, these data do not largely overlap with those obtained by the other project [Uetz, P., et al. (2000) Nature (London) 403, 623-627] and hence have substantially expanded our knowledge on the protein interaction space or interactome of the yeast. Cumulative connection of these binary interactions generates a single huge network linking the vast majority of the proteins. Bioinformatics-aided selection of biologically relevant interactions highlights various intriguing subnetworks. They include, for instance, the one that had successfully foreseen the involvement of a novel protein in spindle pole body function as well as the one that may uncover a hitherto unidentified multiprotein complex potentially participating in the process of vesicular transport. Our data would thus significantly expand and improve the protein interaction map for the exploration of genome functions that eventually leads to thorough understanding of the cell as a molecular system.

                Author and article information

                Nucleic Acids Res
                Nucleic Acids Res
                Nucleic Acids Research
                Oxford University Press
                February 2009
                18 December 2008
                18 December 2008
                : 37
                : 3
                : 825-831
                1Molecular Structure and Function Program, Hospital for Sick Children, Toronto ON, M5G 1X8, 2Department of Biochemistry University of Toronto, 1 Kings College Circle, Toronto ON, M5S 1A8 and 3Department of Molecular Genetics, University of Toronto, 1 Kings College Circle, Toronto ON, M5S 1A8, Canada
                Author notes
                *To whom correspondence should be addressed. Tel: +1 416 813 8899; Fax: +1 416 813 8755; Email: shuyepu@ 123456sickkids.ca
                © 2008 The Author(s)

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                Computational Biology



                Comment on this article