14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Atmospheric brown clouds reach the Tibetan Plateau by crossing the Himalayas

      , , , , , ,
      Atmospheric Chemistry and Physics
      Copernicus GmbH

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p><strong>Abstract.</strong> The Himalayas and the Tibetan Plateau region (HTP), despite being a remote and sparsely populated area, is regularly exposed to polluted air masses with significant amounts of aerosols including black carbon. These dark, light-absorbing particles are known to exert a great melting potential on mountain cryospheric reservoirs through albedo reduction and radiative forcing. This study combines ground-based and satellite remote sensing data to identify a severe aerosol pollution episode observed simultaneously in central Tibet and on the southern side of the Himalayas during 13–19 March 2009 (pre-monsoon). Trajectory calculations based on the high-resolution numerical weather prediction model COSMO are used to locate the source regions and study the mechanisms of pollution transport in the complex topography of the HTP. We detail how polluted air masses from an atmospheric brown cloud (ABC) over South Asia reach the Tibetan Plateau within a few days. Lifting and advection of polluted air masses over the great mountain range is enabled by a combination of synoptic-scale and local meteorological processes. During the days prior to the event, winds over the Indo-Gangetic Plain (IGP) are generally weak at lower levels, allowing for accumulation of pollutants and thus the formation of ABCs. The subsequent passing of synoptic-scale troughs leads to southwesterly flow in the middle troposphere over northern and central India, carrying the polluted air masses across the Himalayas. As the IGP is known to be a hotspot of ABCs, the cross-Himalayan transport of polluted air masses may have serious implications for the cryosphere in the HTP and impact climate on regional to global scales. Since the current study focuses on one particularly strong pollution episode, quantifying the frequency and magnitude of similar events in a climatological study is required to assess the total impact.</p>

          Related collections

          Most cited references48

          • Record: found
          • Abstract: not found
          • Article: not found

          AERONET—A Federated Instrument Network and Data Archive for Aerosol Characterization

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Global and regional climate changes due to black carbon

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings

                Bookmark

                Author and article information

                Journal
                Atmospheric Chemistry and Physics
                Atmos. Chem. Phys.
                Copernicus GmbH
                1680-7324
                2015
                June 01 2015
                : 15
                : 11
                : 6007-6021
                Article
                10.5194/acp-15-6007-2015
                b170e094-b59c-4e00-9461-cd7539d2eea4
                © 2015

                https://creativecommons.org/licenses/by/3.0/

                History

                Comments

                Comment on this article