12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Interfraction variation and dosimetric changes during image-guided radiation therapy in prostate cancer patients

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Purpose

          The aim of this study was to identify volume changes and dose variations of rectum and bladder during radiation therapy in prostate cancer (PC) patients.

          Materials and Methods

          We analyzed 20 patients with PC treated with helical tomotherapy. Daily image guidance was performed. We re-contoured the entire bladder and rectum including its contents as well as the organ walls on megavoltage computed tomography once a week. Dose variations were analyzed by means of Dmedian, Dmean, Dmax, V 10 to V 75, as well as the organs at risk (OAR) volume. Further, we investigated the correlation between volume changes and changes in Dmean of OAR.

          Results

          During treatment, the rectal volume ranged from 62% to 223% of its initial volume, the bladder volume from 22% to 375%. The average Dmean ranged from 87% to 118% for the rectum and 58% to 160% for the bladder. The Pearson correlation coefficients between volume changes and corresponding changes in Dmean were -0.82 for the bladder and 0.52 for the rectum. The comparison of the dose wall histogram (DWH) and the dose volume histogram (DVH) showed that the DVH underestimates the percentage of the rectal and bladder volume exposed to the high dose region.

          Conclusion

          Relevant variations in the volume of OAR and corresponding dose variations can be observed. For the bladder, an increase in the volume generally leads to lower doses; for the rectum, the correlation is weaker. Having demonstrated remarkable differences in the dose distribution of the DWH and the DVH, the use of DWHs should be considered.

          Related collections

          Most cited references19

          • Record: found
          • Abstract: found
          • Article: not found

          Improved clinical outcomes with high-dose image guided radiotherapy compared with non-IGRT for the treatment of clinically localized prostate cancer.

          To compare toxicity profiles and biochemical tumor control outcomes between patients treated with high-dose image-guided radiotherapy (IGRT) and high-dose intensity-modulated radiotherapy (IMRT) for clinically localized prostate cancer. Between 2008 and 2009, 186 patients with prostate cancer were treated with IGRT to a dose of 86.4 Gy with daily correction of the target position based on kilovoltage imaging of implanted prostatic fiducial markers. This group of patients was retrospectively compared with a similar cohort of 190 patients who were treated between 2006 and 2007 with IMRT to the same prescription dose without, however, implanted fiducial markers in place (non-IGRT). The median follow-up time was 2.8 years (range, 2-6 years). A significant reduction in late urinary toxicity was observed for IGRT patients compared with the non-IGRT patients. The 3-year likelihood of grade 2 and higher urinary toxicity for the IGRT and non-IGRT cohorts were 10.4% and 20.0%, respectively (p = 0.02). Multivariate analysis identifying predictors for grade 2 or higher late urinary toxicity demonstrated that, in addition to the baseline Internatinoal Prostate Symptom Score, IGRT was associated with significantly less late urinary toxicity compared with non-IGRT. The incidence of grade 2 and higher rectal toxicity was low for both treatment groups (1.0% and 1.6%, respectively; p = 0.81). No differences in prostate-specific antigen relapse-free survival outcomes were observed for low- and intermediate-risk patients when treated with IGRT and non-IGRT. For high-risk patients, a significant improvement was observed at 3 years for patients treated with IGRT compared with non-IGRT. IGRT is associated with an improvement in biochemical tumor control among high-risk patients and a lower rate of late urinary toxicity compared with high-dose IMRT. These data suggest that, for definitive radiotherapy, the placement of fiducial markers and daily tracking of target positioning may represent the preferred mode of external-beam radiotherapy delivery for the treatment of prostate cancer. Copyright © 2012 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Organ motion and its management.

            To compile and review data on the topic of organ motion and its management. Data were classified into three categories: (a) patient position-related organ motion, (b) interfraction organ motion, and (c) intrafraction organ motion. Data on interfraction motion of gynecological tumors, the prostate, bladder, and rectum are reviewed. Literature pertaining to the intrafraction movement of the liver, diaphragm, kidneys, pancreas, lung tumors, and prostate is compiled. Methods for managing interfraction and intrafraction organ motion in radiation therapy are also reviewed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              High-dose intensity modulated radiation therapy for prostate cancer: early toxicity and biochemical outcome in 772 patients.

              To report the acute and late toxicity and preliminary biochemical outcomes in 772 patients with clinically localized prostate cancer treated with high-dose intensity-modulated radiotherapy (IMRT). Between April 1996 and January 2001, 772 patients with clinically localized prostate cancer were treated with IMRT. Treatment was planned using an inverse-planning approach, and the desired beam intensity profiles were delivered by dynamic multileaf collimation. A total of 698 patients (90%) were treated to 81.0 Gy, and 74 patients (10%) were treated to 86.4 Gy. Acute and late toxicities were scored by the Radiation Therapy Oncology Group morbidity grading scales. PSA relapse was defined according to The American Society of Therapeutic Radiation Oncology Consensus Statement. The median follow-up time was 24 months (range: 6-60 months). Thirty-five patients (4.5%) developed acute Grade 2 rectal toxicity, and no patient experienced acute Grade 3 or higher rectal symptoms. Two hundred seventeen patients (28%) developed acute Grade 2 urinary symptoms, and one experienced urinary retention (Grade 3). Eleven patients (1.5%) developed late Grade 2 rectal bleeding. Four patients (0.1%) experienced Grade 3 rectal toxicity requiring either one or more transfusions or a laser cauterization procedure. No Grade 4 rectal complications have been observed. The 3-year actuarial likelihood of >/= late Grade 2 rectal toxicity was 4%. Seventy-two patients (9%) experienced late Grade 2 urinary toxicity, and five (0.5%) developed Grade 3 urinary toxicity (urethral stricture). The 3-year actuarial likelihood of >/= late Grade 2 urinary toxicity was 15%. The 3-year actuarial PSA relapse-free survival rates for favorable, intermediate, and unfavorable risk group patients were 92%, 86%, and 81%, respectively. These data demonstrate the feasibility of high-dose IMRT in a large number of patients. Acute and late rectal toxicities seem to be significantly reduced compared with what has been observed with conventional three-dimensional conformal radiotherapy techniques. Short-term PSA control rates seem to be at least comparable to those achieved with three-dimensional conformal radiotherapy at similar dose levels. Based on this favorable risk:benefit ratio, IMRT has become the standard mode of conformal treatment delivery for localized prostate cancer at our institution.
                Bookmark

                Author and article information

                Journal
                Radiat Oncol J
                Radiat Oncol J
                ROJ
                Radiation Oncology Journal
                The Korean Society for Radiation Oncology
                2234-1900
                2234-3164
                June 2019
                28 March 2019
                : 37
                : 2
                : 127-133
                Affiliations
                [1 ]Department of Radiation Oncology, Technical University of Munich (TUM), Germany
                [2 ]Institute of Radiation Medicine, Department of Radiation Sciences, Helmholtz Zentrum München, Neuherberg, Germany
                Author notes
                Correspondence: Frederik Fuchs, Department of Radiation Oncology, Technical University Munich (TUM), Ismaninger Strasse 22, Munich 81675, Germany. Tel: +49-089-4140-4502, Fax: +49-089-4140-4477, E-mail: frederik.fuchs@ 123456gmx.net
                Author information
                http://orcid.org/0000-0001-9086-2066
                Article
                roj-2018-00514
                10.3857/roj.2018.00514
                6610012
                31137087
                b1738532-c056-4f1f-bfd7-922d7f155e9c
                Copyright © 2019 The Korean Society for Radiation Oncology

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/4.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 20 November 2018
                : 11 March 2019
                : 15 March 2019
                Categories
                Original Article

                Oncology & Radiotherapy
                prostatic neoplasms,image-guided radiotherapy; intensity-modulated radiotherapy,urinary bladder,rectum

                Comments

                Comment on this article