51
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The lysyl oxidase inhibitor β-aminopropionitrile reduces body weight gain and improves the metabolic profile in diet-induced obesity in rats

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          ABSTRACT

          Extracellular matrix (ECM) remodelling of the adipose tissue plays a pivotal role in the pathophysiology of obesity. The lysyl oxidase (LOX) family of amine oxidases, including LOX and LOX-like (LOXL) isoenzymes, controls ECM maturation, and upregulation of LOX activity is essential in fibrosis; however, its involvement in adipose tissue dysfunction in obesity is unclear. In this study, we observed that LOX is the main isoenzyme expressed in human adipose tissue and that its expression is strongly upregulated in samples from obese individuals that had been referred to bariatric surgery. LOX expression was also induced in the adipose tissue from male Wistar rats fed a high-fat diet (HFD). Interestingly, treatment with β-aminopropionitrile (BAPN), a specific and irreversible inhibitor of LOX activity, attenuated the increase in body weight and fat mass that was observed in obese animals and shifted adipocyte size toward smaller adipocytes. BAPN also ameliorated the increase in collagen content that was observed in adipose tissue from obese animals and improved several metabolic parameters – it ameliorated glucose and insulin levels, decreased homeostasis model assessment (HOMA) index and reduced plasma triglyceride levels. Furthermore, in white adipose tissue from obese animals, BAPN prevented the downregulation of adiponectin and glucose transporter 4 (GLUT4), as well as the increase in suppressor of cytokine signaling 3 (SOCS3) and dipeptidyl peptidase 4 (DPP4) levels, triggered by the HFD. Likewise, in the TNFα-induced insulin-resistant 3T3-L1 adipocyte model, BAPN prevented the downregulation of adiponectin and GLUT4 and the increase in SOCS3 levels, and consequently normalised insulin-stimulated glucose uptake. Therefore, our data provide evidence that LOX plays a pathologically relevant role in the metabolic dysfunction induced by obesity and emphasise the interest of novel pharmacological interventions that target adipose tissue fibrosis and LOX activity for the clinical management of this disease.

          Abstract

          Highlighted Article: Lysyl oxidase (LOX) could play a role in the metabolic dysfunction induced by obesity, and consequently the inhibition of LOX activity could be a valuable strategy to ameliorate obesity-related metabolic disturbances.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          Metabolic dysregulation and adipose tissue fibrosis: role of collagen VI.

          Adipocytes are embedded in a unique extracellular matrix whose main function is to provide mechanical support, in addition to participating in a variety of signaling events. During adipose tissue expansion, the extracellular matrix requires remodeling to accommodate adipocyte growth. Here, we demonstrate a general upregulation of several extracellular matrix components in adipose tissue in the diabetic state, therefore implicating "adipose tissue fibrosis" as a hallmark of metabolically challenged adipocytes. Collagen VI is a highly enriched extracellular matrix component of adipose tissue. The absence of collagen VI results in the uninhibited expansion of individual adipocytes and is paradoxically associated with substantial improvements in whole-body energy homeostasis, both with high-fat diet exposure and in the ob/ob background. Collectively, our data suggest that weakening the extracellular scaffold of adipocytes enables their stress-free expansion during states of positive energy balance, which is consequently associated with an improved inflammatory profile. Therefore, the disproportionate accumulation of extracellular matrix components in adipose tissue may not be merely an epiphenomenon of metabolically challenging conditions but may also directly contribute to a failure to expand adipose tissue mass during states of excess caloric intake.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Hypoxia-inducible factor 1alpha induces fibrosis and insulin resistance in white adipose tissue.

            Adipose tissue can undergo rapid expansion during times of excess caloric intake. Like a rapidly expanding tumor mass, obese adipose tissue becomes hypoxic due to the inability of the vasculature to keep pace with tissue growth. Consequently, during the early stages of obesity, hypoxic conditions cause an increase in the level of hypoxia-inducible factor 1alpha (HIF1alpha) expression. Using a transgenic model of overexpression of a constitutively active form of HIF1alpha, we determined that HIF1alpha fails to induce the expected proangiogenic response. In contrast, we observed that HIF1alpha initiates adipose tissue fibrosis, with an associated increase in local inflammation. "Trichrome- and picrosirius red-positive streaks," enriched in fibrillar collagens, are a hallmark of adipose tissue suffering from the early stages of hypoxia-induced fibrosis. Lysyl oxidase (LOX) is a transcriptional target of HIF1alpha and acts by cross-linking collagen I and III to form the fibrillar collagen fibers. Inhibition of LOX activity by beta-aminoproprionitrile treatment results in a significant improvement in several metabolic parameters and further reduces local adipose tissue inflammation. Collectively, our observations are consistent with a model in which adipose tissue hypoxia serves as an early upstream initiator for adipose tissue dysfunction by inducing a local state of fibrosis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Adipose tissue expandability, lipotoxicity and the Metabolic Syndrome--an allostatic perspective.

              While the link between obesity and type 2 diabetes is clear on an epidemiological level, the underlying mechanism linking these two common disorders is not as clearly understood. One hypothesis linking obesity to type 2 diabetes is the adipose tissue expandability hypothesis. The adipose tissue expandability hypothesis states that a failure in the capacity for adipose tissue expansion, rather than obesity per se is the key factor linking positive energy balance and type 2 diabetes. All individuals possess a maximum capacity for adipose expansion which is determined by both genetic and environmental factors. Once the adipose tissue expansion limit is reached, adipose tissue ceases to store energy efficiently and lipids begin to accumulate in other tissues. Ectopic lipid accumulation in non-adipocyte cells causes lipotoxic insults including insulin resistance, apoptosis and inflammation. This article discusses the links between adipokines, inflammation, adipose tissue expandability and lipotoxicity. Finally, we will discuss how considering the concept of allostasis may enable a better understanding of how diabetes develops and allow the rational design of new anti diabetic treatments. Copyright (c) 2009 Elsevier B.V. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Dis Model Mech
                DMM
                dmm
                Disease Models & Mechanisms
                The Company of Biologists
                1754-8403
                1754-8411
                1 June 2015
                1 June 2015
                : 8
                : 6
                : 543-551
                Affiliations
                [ 1 ]Departamento de Fisiología, Facultad de Medicina, Universidad Complutense , Madrid 28040, Spain
                [ 2 ]Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM) , Madrid 28007, Spain
                [ 3 ]Centro de Investigación Cardiovascular (CSIC-ICCC), IIB-Sant Pau , Barcelona 08025, Spain
                [ 4 ]Cardiovascular Translational Research, NavarraBiomed (Fundación Miguel Servet) , Pamplona 31008, Spain
                [ 5 ]Upper Gastroenterology & Bariatric Surgery Department, Fuenlabrada University Hospital , Madrid 28942, Spain
                [ 6 ]Cardiology Department, Cardiovascular Institute, Hospital Clínico San Carlos , Madrid 28040, Spain
                Author notes
                [*]

                These authors contributed equally to this work

                []Authors for correspondence ( crodriguezs@ 123456csic-iccc.org ; vcara@ 123456ucm.es )
                Article
                DMM020107
                10.1242/dmm.020107
                4457038
                26035864
                b17de739-64a3-43bb-9bdb-c1289a9ba7b6
                © 2015. Published by The Company of Biologists Ltd

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed.

                History
                : 20 January 2015
                : 28 March 2015
                Categories
                Research Article
                Custom metadata
                TIB

                Molecular medicine
                lysyl oxidase,extracellular matrix,adipose tissue,fibrosis,obesity,insulin resistance

                Comments

                Comment on this article