4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Binding of p53 and its core domain to supercoiled DNA.

      European journal of biochemistry / FEBS
      Baculoviridae, metabolism, Binding Sites, Binding, Competitive, DNA, chemistry, DNA, Superhelical, Dose-Response Relationship, Drug, Electrophoresis, Agar Gel, Hot Temperature, Nucleic Acid Conformation, Plasmids, Protein Binding, Protein Structure, Tertiary, Tumor Suppressor Protein p53

      Read this article at

      ScienceOpenPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We have compared the binding of human full-length p53 protein (p53; expressed in bacteria and insects) and its isolated core domain (p53CD, amino acids 94-312; expressed in bacteria) to negatively supercoiled (sc) DNA using gel electrophoresis and immunoblotting. Significant differences were observed; p53CD produced a relatively small and continuous retardation of scDNA, in contrast to the ladder of distinct bands formed by p53 in agarose gels. The ladder produced by full-length protein expressed in bacteria (p53b) was similar to that observed earlier with protein expressed in insect cells (p53i). Competition between scDNAs and their linearized (lin) forms showed a preference for scDNAs by both p53 and p53CD, but the ratios characterizing the distribution of the protein between sc and lin pBluescript DNAs were substantially higher for p53 (sc/lin > 60 in p53b) than for p53CD (sc/lin approximately 4). Strong binding of p53 to scDNA lacking the p53 consensus sequence may represent a new p53-binding mode, which we tentatively denote supercoil-selective (SCS) binding. This binding requires both the C-terminal domain and the core domain. Targets of this binding may include: (a) DNA segments defined both by the nucleotide sequence and local topology, and/or (b) strand crossings and/or bending. The binding preference of p53CD for scDNA may be due to the known nonspecific binding to internal single-stranded regions in scDNA (absent in relaxed DNA molecules) and/or to SCS binding albeit with reduced affinity due to the absence of contributions from other p53 domains.

          Related collections

          Author and article information

          Comments

          Comment on this article