43
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Origins of Host-Specific Populations of the Blast Pathogen Magnaporthe oryzae in Crop Domestication With Subsequent Expansion of Pandemic Clones on Rice and Weeds of Rice

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Rice, as a widely and intensively cultivated crop, should be a target for parasite host shifts and a source for shifts to co-occurring weeds. Magnaporthe oryzae, of the M. grisea species complex, is the most important fungal pathogen of rice, with a high degree of host specificity. On the basis of 10 loci from six of its seven linkage groups, 37 multilocus haplotypes among 497 isolates of M. oryzae from rice and other grasses were identified. Phylogenetic relationships among isolates from rice (Oryza sativa), millet (Setaria spp.), cutgrass (Leersia hexandra), and torpedo grass (Panicum repens) were predominantly tree like, consistent with a lack of recombination, but from other hosts were reticulate, consistent with recombination. The single origin of rice-infecting M. oryzae followed a host shift from a Setaria millet and was closely followed by additional shifts to weeds of rice, cutgrass, and torpedo grass. Two independent estimators of divergence time indicate that these host shifts predate the Green Revolution and could be associated with rice domestication. The rice-infecting lineage is characterized by high copy number of the transposable element MGR586 (Pot3) and, except in two haplotypes, by a loss of AVR-Co39. Both mating types have been retained in ancestral, well-distributed rice-infecting haplotypes 10 (mainly temperate) and 14 (mainly tropical), but only one mating type was recovered from several derived, geographically restricted haplotypes. There is evidence of a common origin of both ACE1 virulence genotypes in haplotype 14. Host-haplotype association is evidenced by low pathogenicity on hosts associated with other haplotypes.

          Related collections

          Most cited references60

          • Record: found
          • Abstract: found
          • Article: not found

          Estimating Absolute Rates of Molecular Evolution and Divergence Times: A Penalized Likelihood Approach

          Rates of molecular evolution vary widely between lineages, but quantification of how rates change has proven difficult. Recently proposed estimation procedures have mainly adopted highly parametric approaches that model rate evolution explicitly. In this study, a semiparametric smoothing method is developed using penalized likelihood. A saturated model in which every lineage has a separate rate is combined with a roughness penalty that discourages rates from varying too much across a phylogeny. A data-driven cross-validation criterion is then used to determine an optimal level of smoothing. This criterion is based on an estimate of the average prediction error associated with pruning lineages from the tree. The methods are applied to three data sets of six genes across a sample of land plants. Optimally smoothed estimates of absolute rates entailed 2- to 10-fold variation across lineages.
            • Record: found
            • Abstract: found
            • Article: not found

            Estimating the rate of evolution of the rate of molecular evolution.

            A simple model for the evolution of the rate of molecular evolution is presented. With a Bayesian approach, this model can serve as the basis for estimating dates of important evolutionary events even in the absence of the assumption of constant rates among evolutionary lineages. The method can be used in conjunction with any of the widely used models for nucleotide substitution or amino acid replacement. It is illustrated by analyzing a data set of rbcL protein sequences.
              • Record: found
              • Abstract: found
              • Article: not found

              On the trail of a cereal killer: Exploring the biology of Magnaporthe grisea.

              The blast fungus Magnaporthe grisea causes a serious disease on a wide variety of grasses including rice, wheat, and barley. Rice blast is the most serious disease of cultivated rice and therefore poses a threat to the world's most important food security crop. Here, I review recent progress toward understanding the molecular biology of plant infection by M. grisea, which involves development of a specialized cell, the appressorium. This dome-shaped cell generates enormous turgor pressure and physical force, allowing the fungus to breach the host cuticle and invade plant tissue. The review also considers the role of avirulence genes in M. grisea and the mechanisms by which resistant rice cultivars are able to perceive the fungus and defend themselves. Finally, the likely mechanisms that promote genetic diversity in M. grisea and our current understanding of the population structure of the blast fungus are evaluated.

                Author and article information

                Journal
                Genetics
                Genetics
                Genetics Society of America
                0016-6731
                1943-2631
                June 24 2005
                June 2005
                June 2005
                March 31 2005
                : 170
                : 2
                : 613-630
                Article
                10.1534/genetics.105.041780
                1450392
                15802503
                b18e83ec-629e-42d5-b79f-eb91cbbd43b4
                © 2005
                History

                Comments

                Comment on this article

                Related Documents Log