36
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Plasma Metabolomics Biosignature According to HIV Stage of Infection, Pace of Disease Progression, Viremia Level and Immunological Response to Treatment

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          We evaluated plasma samples HIV-infected individuals with different phenotypic profile among five HIV-infected elite controllers and five rapid progressors after recent HIV infection and one year later and from 10 individuals subjected to antiretroviral therapy, five of whom were immunological non-responders (INR), before and after one year of antiretroviral treatment compared to 175 samples from HIV-negative patients. A targeted quantitative tandem mass spectrometry metabolomics approach was used in order to determine plasma metabolomics biosignature that may relate to HIV infection, pace of HIV disease progression, and immunological response to treatment.

          Results

          Twenty-five unique metabolites were identified, including five metabolites that could distinguish rapid progressors and INRs at baseline. Severe deregulation in acylcarnitine and sphingomyelin metabolism compatible with mitochondrial deficiencies was observed. β-oxidation and sphingosine‐1‐phosphate-phosphatase-1 activity were down-regulated, whereas acyl-alkyl-containing phosphatidylcholines and alkylglyceronephosphate synthase levels were elevated in INRs. Evidence that elite controllers harbor an inborn error of metabolism (late-onset multiple acyl-coenzyme A dehydrogenase deficiency [MADD]) was detected.

          Conclusions

          Blood-based markers from metabolomics show a very high accuracy of discriminating HIV infection between varieties of controls and have the ability to predict rapid disease progression or poor antiretroviral immunological response. These metabolites can be used as biomarkers of HIV natural evolution or treatment response and provide insight into the mechanisms of the disease.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found

          Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression.

          Multiple, complex molecular events characterize cancer development and progression. Deciphering the molecular networks that distinguish organ-confined disease from metastatic disease may lead to the identification of critical biomarkers for cancer invasion and disease aggressiveness. Although gene and protein expression have been extensively profiled in human tumours, little is known about the global metabolomic alterations that characterize neoplastic progression. Using a combination of high-throughput liquid-and-gas-chromatography-based mass spectrometry, we profiled more than 1,126 metabolites across 262 clinical samples related to prostate cancer (42 tissues and 110 each of urine and plasma). These unbiased metabolomic profiles were able to distinguish benign prostate, clinically localized prostate cancer and metastatic disease. Sarcosine, an N-methyl derivative of the amino acid glycine, was identified as a differential metabolite that was highly increased during prostate cancer progression to metastasis and can be detected non-invasively in urine. Sarcosine levels were also increased in invasive prostate cancer cell lines relative to benign prostate epithelial cells. Knockdown of glycine-N-methyl transferase, the enzyme that generates sarcosine from glycine, attenuated prostate cancer invasion. Addition of exogenous sarcosine or knockdown of the enzyme that leads to sarcosine degradation, sarcosine dehydrogenase, induced an invasive phenotype in benign prostate epithelial cells. Androgen receptor and the ERG gene fusion product coordinately regulate components of the sarcosine pathway. Here, by profiling the metabolomic alterations of prostate cancer progression, we reveal sarcosine as a potentially important metabolic intermediary of cancer cell invasion and aggressivity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Quantitative metabolome profiling of colon and stomach cancer microenvironment by capillary electrophoresis time-of-flight mass spectrometry.

            Most cancer cells predominantly produce energy by glycolysis rather than oxidative phosphorylation via the tricarboxylic acid (TCA) cycle, even in the presence of an adequate oxygen supply (Warburg effect). However, little has been reported regarding the direct measurements of global metabolites in clinical tumor tissues. Here, we applied capillary electrophoresis time-of-flight mass spectrometry, which enables comprehensive and quantitative analysis of charged metabolites, to simultaneously measure their levels in tumor and grossly normal tissues obtained from 16 colon and 12 stomach cancer patients. Quantification of 94 metabolites in colon and 95 metabolites in stomach involved in glycolysis, the pentose phosphate pathway, the TCA and urea cycles, and amino acid and nucleotide metabolisms resulted in the identification of several cancer-specific metabolic traits. Extremely low glucose and high lactate and glycolytic intermediate concentrations were found in both colon and stomach tumor tissues, which indicated enhanced glycolysis and thus confirmed the Warburg effect. Significant accumulation of all amino acids except glutamine in the tumors implied autophagic degradation of proteins and active glutamine breakdown for energy production, i.e., glutaminolysis. In addition, significant organ-specific differences were found in the levels of TCA cycle intermediates, which reflected the dependency of each tissue on aerobic respiration according to oxygen availability. The results uncovered unexpectedly poor nutritional conditions in the actual tumor microenvironment and showed that capillary electrophoresis coupled to mass spectrometry-based metabolomics, which is capable of quantifying the levels of energy metabolites in tissues, could be a powerful tool for the development of novel anticancer agents that target cancer-specific metabolism.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Dopamine neurons modulate neural encoding and expression of depression-related behaviour.

              Major depression is characterized by diverse debilitating symptoms that include hopelessness and anhedonia. Dopamine neurons involved in reward and motivation are among many neural populations that have been hypothesized to be relevant, and certain antidepressant treatments, including medications and brain stimulation therapies, can influence the complex dopamine system. Until now it has not been possible to test this hypothesis directly, even in animal models, as existing therapeutic interventions are unable to specifically target dopamine neurons. Here we investigated directly the causal contributions of defined dopamine neurons to multidimensional depression-like phenotypes induced by chronic mild stress, by integrating behavioural, pharmacological, optogenetic and electrophysiological methods in freely moving rodents. We found that bidirectional control (inhibition or excitation) of specified midbrain dopamine neurons immediately and bidirectionally modulates (induces or relieves) multiple independent depression symptoms caused by chronic stress. By probing the circuit implementation of these effects, we observed that optogenetic recruitment of these dopamine neurons potently alters the neural encoding of depression-related behaviours in the downstream nucleus accumbens of freely moving rodents, suggesting that processes affecting depression symptoms may involve alterations in the neural encoding of action in limbic circuitry.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                12 December 2016
                2016
                : 11
                : 12
                : e0161920
                Affiliations
                [1 ]Federal University of Sao Paulo, Department of Medicine, Sao Paulo—SP, Brazil
                [2 ]University of California at San Francisco, Department of Medicine, San Francisco, CA, United States of America
                [3 ]Federal University of Sao Paulo, Department of Microbiology, Sao Paulo—SP, Brazil
                Imperial College London, UNITED KINGDOM
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                • Conceived and designed the experiments: BS LMRJ IDCS RSD.

                • Performed the experiments: BS MZ.

                • Analyzed the data: BS MZ MCAS IDCS.

                • Contributed reagents/materials/analysis tools: IDCS RSD.

                • Wrote the paper: MCAS HHMT LMRJ IDCS RSD.

                Article
                PONE-D-15-34492
                10.1371/journal.pone.0161920
                5152829
                27941971
                b193c23a-469c-4c21-a247-a77c556ba553
                © 2016 Scarpelini et al

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 18 August 2015
                : 15 August 2016
                Page count
                Figures: 4, Tables: 1, Pages: 13
                Funding
                Funded by: funder-id http://dx.doi.org/10.13039/501100001807, Fundação de Amparo à Pesquisa do Estado de São Paulo;
                Award ID: 04/15856-9
                Award Recipient :
                This study was supported with funding from the Fundação de Amparo a Pesquisa do Estado de São Paulo - São Paulo Research Foundation - (04/15856-9). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Biochemistry
                Metabolism
                Metabolites
                Biology and Life Sciences
                Biochemistry
                Metabolism
                Metabolomics
                Biology and Life Sciences
                Microbiology
                Medical Microbiology
                Microbial Pathogens
                Viral Pathogens
                Immunodeficiency Viruses
                HIV
                Medicine and Health Sciences
                Pathology and Laboratory Medicine
                Pathogens
                Microbial Pathogens
                Viral Pathogens
                Immunodeficiency Viruses
                HIV
                Biology and Life Sciences
                Organisms
                Viruses
                Viral Pathogens
                Immunodeficiency Viruses
                HIV
                Biology and Life Sciences
                Organisms
                Viruses
                Immunodeficiency Viruses
                HIV
                Biology and life sciences
                Organisms
                Viruses
                RNA viruses
                Retroviruses
                Lentivirus
                HIV
                Biology and Life Sciences
                Microbiology
                Medical Microbiology
                Microbial Pathogens
                Viral Pathogens
                Retroviruses
                Lentivirus
                HIV
                Medicine and Health Sciences
                Pathology and Laboratory Medicine
                Pathogens
                Microbial Pathogens
                Viral Pathogens
                Retroviruses
                Lentivirus
                HIV
                Biology and Life Sciences
                Organisms
                Viruses
                Viral Pathogens
                Retroviruses
                Lentivirus
                HIV
                Medicine and health sciences
                Infectious diseases
                Viral diseases
                HIV infections
                Medicine and Health Sciences
                Metabolic Disorders
                Inborn Errors of Metabolism
                Biology and Life Sciences
                Immunology
                Immune Response
                Medicine and Health Sciences
                Immunology
                Immune Response
                Medicine and Health Sciences
                Pharmacology
                Drugs
                Antimicrobials
                Antivirals
                Antiretrovirals
                Biology and Life Sciences
                Microbiology
                Microbial Control
                Antimicrobials
                Antivirals
                Antiretrovirals
                Biology and Life Sciences
                Microbiology
                Virology
                Antivirals
                Antiretrovirals
                Biology and Life Sciences
                Cell Biology
                Cellular Types
                Animal Cells
                Blood Cells
                White Blood Cells
                T Cells
                Biology and Life Sciences
                Cell Biology
                Cellular Types
                Animal Cells
                Immune Cells
                White Blood Cells
                T Cells
                Biology and Life Sciences
                Immunology
                Immune Cells
                White Blood Cells
                T Cells
                Medicine and Health Sciences
                Immunology
                Immune Cells
                White Blood Cells
                T Cells
                Custom metadata
                All relevant data are within the manuscript, supporting information files, and hosted at Open Science Framework. Lipidomics data hosted at Open Science Framework can be found at the following DOI: 10.17605/OSF.IO/PGU83

                Uncategorized
                Uncategorized

                Comments

                Comment on this article