Biogas is a significant renewable fuel derived by sources of biological origin. One of today’s research issues is the effect of biofuels on engine efficiency. The experiments on the engine are complicated, time consuming and expensive. Furthermore, the evaluation cannot be carried out beyond the permissible limit. The purpose of this research is to build an artificial neural network successfully for dual fuel diesel engine with a view to overcoming experimental difficulties. Authors used engine load, bio-gas flow rate and n-butanol concentration as input parameters to forecast target variables in this analysis, i.e., smoke, brake thermal efficiency (BTE), carbon monoxide (CO), hydrocarbon (HC), nitrous-oxide (NOx). Estimated values and results of experiments were compared. The error analysis showed that the built model has quite accurately predicted the experimental results. This has been described by the value of Coefficient of determination (R2), which varies between 0.8493 and 0.9863 with the value of normalized mean square error (NMSE) between 0.0071 and 0.1182. The potency of the Nash-Sutcliffe coefficient of efficiency (NSCE) ranges from 0.821 to 0.8898 for BTE, HC, NOx and Smoke. This research has effectively emulated the on-board efficiency, emission, and combustion features of a dual-fuel biogas diesel engine taking the Swish activation mechanism in artificial neural network (ANN) model.