16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Carotid Body Denervation Prevents the Development of Insulin Resistance and Hypertension Induced by Hypercaloric Diets

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Increased sympathetic activity is a well-known pathophysiological mechanism in insulin resistance (IR) and hypertension (HT). The carotid bodies (CB) are peripheral chemoreceptors that classically respond to hypoxia by increasing chemosensory activity in the carotid sinus nerve (CSN), causing hyperventilation and activation of the sympathoadrenal system. Besides its role in the control of ventilation, the CB has been proposed as a glucose sensor implicated in the control of energy homeostasis. However, to date no studies have anticipated its role in the development of IR. Herein, we propose that CB overstimulation is involved in the etiology of IR and HT, core metabolic and hemodynamic disturbances of highly prevalent diseases like the metabolic syndrome, type 2 diabetes, and obstructive sleep apnoea. We demonstrate that CB activity is increased in IR animal models and that CSN resection prevents CB overactivation and diet-induced IR and HT. Moreover, we show that insulin triggers CB, highlighting a new role for hyperinsulinemia as a stimulus for CB overactivation. We propose that CB is implicated in the pathogenesis of metabolic and hemodynamic disturbances through sympathoadrenal overactivation and may represent a novel therapeutic target in these diseases.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: not found

          Banting lecture 1988. Role of insulin resistance in human disease.

          G M Reaven (1988)
          Resistance to insulin-stimulated glucose uptake is present in the majority of patients with impaired glucose tolerance (IGT) or non-insulin-dependent diabetes mellitus (NIDDM) and in approximately 25% of nonobese individuals with normal oral glucose tolerance. In these conditions, deterioration of glucose tolerance can only be prevented if the beta-cell is able to increase its insulin secretory response and maintain a state of chronic hyperinsulinemia. When this goal cannot be achieved, gross decompensation of glucose homeostasis occurs. The relationship between insulin resistance, plasma insulin level, and glucose intolerance is mediated to a significant degree by changes in ambient plasma free-fatty acid (FFA) concentration. Patients with NIDDM are also resistant to insulin suppression of plasma FFA concentration, but plasma FFA concentrations can be reduced by relatively small increments in insulin concentration. Consequently, elevations of circulating plasma FFA concentration can be prevented if large amounts of insulin can be secreted. If hyperinsulinemia cannot be maintained, plasma FFA concentration will not be suppressed normally, and the resulting increase in plasma FFA concentration will lead to increased hepatic glucose production. Because these events take place in individuals who are quite resistant to insulin-stimulated glucose uptake, it is apparent that even small increases in hepatic glucose production are likely to lead to significant fasting hyperglycemia under these conditions. Although hyperinsulinemia may prevent frank decompensation of glucose homeostasis in insulin-resistant individuals, this compensatory response of the endocrine pancreas is not without its price. Patients with hypertension, treated or untreated, are insulin resistant, hyperglycemic, and hyperinsulinemic. In addition, a direct relationship between plasma insulin concentration and blood pressure has been noted. Hypertension can also be produced in normal rats when they are fed a fructose-enriched diet, an intervention that also leads to the development of insulin resistance and hyperinsulinemia. The development of hypertension in normal rats by an experimental manipulation known to induce insulin resistance and hyperinsulinemia provides further support for the view that the relationship between the three variables may be a causal one.(ABSTRACT TRUNCATED AT 400 WORDS)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Prospective study of the association between sleep-disordered breathing and hypertension.

            Sleep-disordered breathing is prevalent in the general population and has been linked to chronically elevated blood pressure in cross-sectional epidemiologic studies. We performed a prospective, population-based study of the association between objectively measured sleep-disordered breathing and hypertension (defined as a laboratory-measured blood pressure of at least 140/90 mm Hg or the use of antihypertensive medications). We analyzed data on sleep-disordered breathing, blood pressure, habitus, and health history at base line and after four years of follow-up in 709 participants of the Wisconsin Sleep Cohort Study (and after eight years of follow-up in the case of 184 of these participants). Participants were assessed overnight by 18-channel polysomnography for sleep-disordered breathing, as defined by the apnea-hypopnea index (the number of episodes of apnea and hypopnea per hour of sleep). The odds ratios for the presence of hypertension at the four-year follow-up study according to the apnea-hypopnea index at base line were estimated after adjustment for base-line hypertension status, body-mass index, neck and waist circumference, age, sex, and weekly use of alcohol and cigarettes. Relative to the reference category of an apnea-hypopnea index of 0 events per hour at base line, the odds ratios for the presence of hypertension at follow-up were 1.42 (95 percent confidence interval, 1.13 to 1.78) with an apnea-hypopnea index of 0.1 to 4.9 events per hour at base line as compared with none, 2.03 (95 percent confidence interval, 1.29 to 3.17) with an apnea-hypopnea index of 5.0 to 14.9 events per hour, and 2.89 (95 percent confidence interval, 1.46 to 5.64) with an apnea-hypopnea index of 15.0 or more events per hour. We found a dose-response association between sleep-disordered breathing at base line and the presence of hypertension four years later that was independent of known confounding factors. The findings suggest that sleep-disordered breathing is likely to be a risk factor for hypertension and consequent cardiovascular morbidity in the general population.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Profound peripheral insulin resistance, independent of obesity, in polycystic ovary syndrome.

              Hyperinsulinemia secondary to a poorly characterized disorder of insulin action is a feature of the polycystic ovary syndrome (PCO). However, controversy exists as to whether insulin resistance results from PCO or the obesity that is frequently associated with it. Thus, we determined in vivo insulin action on peripheral glucose utilization (M) and hepatic glucose production (HGP) with the euglycemic glucose-clamp technique in obese (n = 19) and nonobese (n = 10) PCO women and age- and body-composition-matched normal ovulatory women (n = 11 obese and n = 8 nonobese women). None had fasting hyperglycemia. Two obese PCO women had diabetes mellitus, established with an oral glucose tolerance test; no other women had impairment of glucose tolerance. However, the obese PCO women had significantly increased fasting and 2-h glucose levels after an oral glucose load and increased basal HGP compared with their body-composition-matched control group. There were statistically significant interactions between obesity and PCO in fasting glucose levels and basal HGP (P less than .05). Steady-state insulin levels of approximately 100 microU/ml were achieved during the clamp. Insulin-stimulated glucose utilization was significantly decreased in both PCO groups whether expressed per kilogram total weight (P less than .001) or per kilogram fat free mass (P less than .001) or when divided by the steady-state plasma insulin (l) level (M/l, P less than .001). There was residual HGP in 4 of 15 obese PCO, 0 of 11 obese normal, 2 of 10 nonobese PCO, and 0 of 8 nonobese normal women. The metabolic clearance rate of insulin did not differ in the four groups. We conclude that 1) PCO women have significant insulin resistance that is independent of obesity, changes in body composition, and impairment of glucose tolerance, 2) PCO and obesity have a synergistic deleterious effect on glucose tolerance, 3) hyperinsulinemia in PCO is not the result of decreased insulin clearance, and 4) PCO is associated with a unique disorder of insulin action.
                Bookmark

                Author and article information

                Journal
                Diabetes
                Diabetes
                diabetes
                diabetes
                Diabetes
                Diabetes
                American Diabetes Association
                0012-1797
                1939-327X
                August 2013
                17 July 2013
                : 62
                : 8
                : 2905-2916
                Affiliations
                [1] 1CEDOC (Centro de Estudos de Doenças Crónicas), Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo Mártires da Pátria, Lisboa, Portugal
                [2] 2Departamento de Bioquímica y Biología Molecular y Fisiología, Facultad de Medicina, Universidad de Valladolid, Instituto de Biología y Genética Molecular, CSIC (Consejo Superior de Investigaciones Cientificas), Ciber de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
                Author notes
                Corresponding author: Sílvia V. Conde, silvia.conde@ 123456fcm.unl.pt .
                Article
                1463
                10.2337/db12-1463
                3717872
                23530003
                b1a5d582-b8b7-4957-b4db-ece98e2b2f15
                © 2013 by the American Diabetes Association.

                Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. See http://creativecommons.org/licenses/by-nc-nd/3.0/ for details.

                History
                : 23 October 2012
                : 20 March 2013
                Page count
                Pages: 12
                Categories
                Original Research
                Pathophysiology

                Endocrinology & Diabetes
                Endocrinology & Diabetes

                Comments

                Comment on this article