2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Enabling tools for engineering collagenous tissues integrating bioreactors, intravital imaging, and biomechanical modeling

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Many investigators have engineered diverse connective tissues having good mechanical properties, yet few tools enable a global understanding of the associated formation of collagen fibers, the primary determinant of connective tissue stiffness. Toward this end, we developed a biomechanical model for collagenous tissues grown on polymer scaffolds that accounts for the kinetics of polymer degradation as well as the synthesis and degradation of multiple families of collagen fibers in response to cyclic strains imparted in a bioreactor. The model predicted well both overall thickness and stress-stretch relationships for tubular engineered vessels cultured for 8 weeks, and suggested that a steady state had not yet been reached. To facilitate future refinements of the model, we also developed bioreactors that enable intravital nonlinear optical microscopic imaging. Using these tools, we found that collagen fiber alignment was driven strongly by nondegraded polymer fibers at early times during culture, with subsequent mechano-stimulated dispersal of fiber orientations as polymer fibers degraded. In summary, mathematical models of growth and remodeling of engineered tissues cultured on polymeric scaffolds can predict evolving tissue morphology and mechanics after long periods of culture, and related empirical observations promise to further our understanding of collagen matrix development in vitro.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          Synthetic biodegradable polymers as orthopedic devices

          Polymer scientists, working closely with those in the device and medical fields, have made tremendous advances over the past 30 years in the use of synthetic materials in the body. In this article we will focus on properties of biodegradable polymers which make them ideally suited for orthopedic applications where a permanent implant is not desired. The materials with the greatest history of use are the poly(lactides) and poly(glycolides), and these will be covered in specific detail. The chemistry of the polymers, including synthesis and degradation, the tailoring of properties by proper synthetic controls such as copolymer composition, special requirements for processing and handling, and mechanisms of biodegradation will be covered. An overview of biocompatibility and approved devices of particular interest in orthopedics are also covered.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Biodegradable Polymer Scaffolds for Tissue Engineering

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              A CONSTRAINED MIXTURE MODEL FOR GROWTH AND REMODELING OF SOFT TISSUES

                Bookmark

                Author and article information

                Journal
                Proceedings of the National Academy of Sciences
                Proc Natl Acad Sci USA
                Proceedings of the National Academy of Sciences
                0027-8424
                1091-6490
                February 23 2010
                February 23 2010
                February 23 2010
                December 01 2009
                : 107
                : 8
                : 3335-3339
                Article
                10.1073/pnas.0907813106
                2840446
                19955446
                b1b1c3a1-b16b-48b5-b2f7-9c875c1acb8f
                © 2009
                History

                Comments

                Comment on this article