10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Altered resting‐state functional network connectivity in profound sensorineural hearing loss infants within an early sensitive period: A group ICA study

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Data from both animal models and deaf children provide evidence for that the maturation of auditory cortex has a sensitive period during the first 2–4 years of life. During this period, the auditory stimulation can affect the development of cortical function to the greatest extent. Thus far, little is known about the brain development trajectory after early auditory deprivation within this period. In this study, independent component analysis (ICA) technique was used to detect the characteristics of brain network development in children with bilateral profound sensorineural hearing loss (SNHL) before 3 years old. Seven resting‐state networks (RSN) were identified in 50 SNHL and 36 healthy controls using ICA method, and further their intra‐and inter‐network functional connectivity (FC) were compared between two groups. Compared with the control group, SNHL group showed decreased FC within default mode network, while enhanced FC within auditory network (AUN) and salience network. No significant changes in FC were found in the visual network (VN) and sensorimotor network (SMN). Furthermore, the inter‐network FC between SMN and AUN, frontal network and AUN, SMN and VN, frontal network and VN were significantly increased in SNHL group. The results implicate that the loss and the compensatory reorganization of brain network FC coexist in SNHL infants. It provides a network basis for understanding the brain development trajectory after hearing loss within early sensitive period.

          Abstract

          In this study, independent component analysis (ICA) technique was used to detect the characteristics of brain network development in children with bilateral profound sensorineural hearing loss (SNHL) before 3 years old. The results implicate that the loss and the compensatory reorganization of brain network FC coexist in SNHL infants. It provides a network basis for understanding the brain development trajectory after hearing loss within early sensitive period.

          Related collections

          Most cited references78

          • Record: found
          • Abstract: found
          • Article: not found

          Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion.

          Here, we demonstrate that subject motion produces substantial changes in the timecourses of resting state functional connectivity MRI (rs-fcMRI) data despite compensatory spatial registration and regression of motion estimates from the data. These changes cause systematic but spurious correlation structures throughout the brain. Specifically, many long-distance correlations are decreased by subject motion, whereas many short-distance correlations are increased. These changes in rs-fcMRI correlations do not arise from, nor are they adequately countered by, some common functional connectivity processing steps. Two indices of data quality are proposed, and a simple method to reduce motion-related effects in rs-fcMRI analyses is demonstrated that should be flexibly implementable across a variety of software platforms. We demonstrate how application of this technique impacts our own data, modifying previous conclusions about brain development. These results suggest the need for greater care in dealing with subject motion, and the need to critically revisit previous rs-fcMRI work that may not have adequately controlled for effects of transient subject movements. Copyright © 2011 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The brain's default network: anatomy, function, and relevance to disease.

            Thirty years of brain imaging research has converged to define the brain's default network-a novel and only recently appreciated brain system that participates in internal modes of cognition. Here we synthesize past observations to provide strong evidence that the default network is a specific, anatomically defined brain system preferentially active when individuals are not focused on the external environment. Analysis of connectional anatomy in the monkey supports the presence of an interconnected brain system. Providing insight into function, the default network is active when individuals are engaged in internally focused tasks including autobiographical memory retrieval, envisioning the future, and conceiving the perspectives of others. Probing the functional anatomy of the network in detail reveals that it is best understood as multiple interacting subsystems. The medial temporal lobe subsystem provides information from prior experiences in the form of memories and associations that are the building blocks of mental simulation. The medial prefrontal subsystem facilitates the flexible use of this information during the construction of self-relevant mental simulations. These two subsystems converge on important nodes of integration including the posterior cingulate cortex. The implications of these functional and anatomical observations are discussed in relation to possible adaptive roles of the default network for using past experiences to plan for the future, navigate social interactions, and maximize the utility of moments when we are not otherwise engaged by the external world. We conclude by discussing the relevance of the default network for understanding mental disorders including autism, schizophrenia, and Alzheimer's disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Dissociable intrinsic connectivity networks for salience processing and executive control.

              Variations in neural circuitry, inherited or acquired, may underlie important individual differences in thought, feeling, and action patterns. Here, we used task-free connectivity analyses to isolate and characterize two distinct networks typically coactivated during functional MRI tasks. We identified a "salience network," anchored by dorsal anterior cingulate (dACC) and orbital frontoinsular cortices with robust connectivity to subcortical and limbic structures, and an "executive-control network" that links dorsolateral frontal and parietal neocortices. These intrinsic connectivity networks showed dissociable correlations with functions measured outside the scanner. Prescan anxiety ratings correlated with intrinsic functional connectivity of the dACC node of the salience network, but with no region in the executive-control network, whereas executive task performance correlated with lateral parietal nodes of the executive-control network, but with no region in the salience network. Our findings suggest that task-free analysis of intrinsic connectivity networks may help elucidate the neural architectures that support fundamental aspects of human behavior.
                Bookmark

                Author and article information

                Contributors
                fanguog@sina.com
                xikuang512@163.com
                Journal
                Hum Brain Mapp
                Hum Brain Mapp
                10.1002/(ISSN)1097-0193
                HBM
                Human Brain Mapping
                John Wiley & Sons, Inc. (Hoboken, USA )
                1065-9471
                1097-0193
                01 June 2021
                September 2021
                : 42
                : 13 ( doiID: 10.1002/hbm.v42.13 )
                : 4314-4326
                Affiliations
                [ 1 ] Department of Radiology The First Hospital, China Medical University Shenyang Liaoning China
                [ 2 ] Department of Otorhinolaryngology The First Hospital, China Medical University Shenyang Liaoning China
                [ 3 ] Department of Radiology Renmin Hospital, Wuhan University Wuhan China
                Author notes
                [*] [* ] Correspondence

                Guoguang Fan and Jian Li, Department of Radiology, The First Hospital, China Medical University, #155, Nanjing North St., Heping Dist., Shenyang, Liaoning 110001, China.

                Email: fanguog@ 123456sina.com (G. F.) and xikuang512@ 123456163.com (J. L.)

                Author information
                https://orcid.org/0000-0001-8114-5727
                Article
                HBM25548
                10.1002/hbm.25548
                8356983
                34060682
                b1bb8f6d-468a-4365-bdb7-0ff0e3fbecee
                © 2021 The Authors. Human Brain Mapping published by Wiley Periodicals LLC.

                This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.

                History
                : 29 April 2021
                : 27 January 2021
                : 20 May 2021
                Page count
                Figures: 5, Tables: 2, Pages: 13, Words: 10294
                Categories
                Research Article
                Research Articles
                Custom metadata
                2.0
                September 2021
                Converter:WILEY_ML3GV2_TO_JATSPMC version:6.0.4 mode:remove_FC converted:11.08.2021

                Neurology
                functional connectivity,independent component analysis,resting‐state network,sensitive period,sensorineural hearing loss

                Comments

                Comment on this article